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TECHNICAL NOTE Noe 1826

LINEAR THEORY OF BOUNDARY EFFECTS IN OPEN
WIND TURNELS WITH FINITE JET IENGTH

By S. Katzoff, Clifford S. Gardner,
Leo Diesendruck, and Bertram J. Elsenstadt

SUMMARY

In the first part, the boundary conditions for en open wind tunnel
(:anompressible flow) are examined with special reference to the effects
of the closed entrance and exlt sections. Basic condltions are that the
velocity must be continuous at the entrance 1lip and that the velocities
in the upstream and downstreem closed portlons must be equal. For the
‘two-dimensicnal open tumel, interesting pessibilitiles develop fram the
fact that the pressures on the two free surfaces need not be equal.

Electrical analogies that might be used for solving the flow in
open wind tunnels are outlined. Two types are describhed - one in which
electrical potential corresponds to veloclty potentlal, end another in
which electrical potentlal corresponds to acceleration potential. The
acceleration-potentlal analoglies are probably experimentally simpler
than the veloclity-potential analogles.

In the second part, solutlons are derived for four types of two-
dimensional open tummels, including one in which the pressures on the
two free surfaces are not equal. Numerical results are given for every
cage. In general, 1f the lifting element is more than half the tumnel
height from the Inlet, the boumdary effect at the 1lifting element is
the seme as for en infinitely long open tunmnel.

In the third part ls given a gemeral method for calculating the
boundary effect in an open clrcular wind tunnel of finite Jet length.
Numerical results are glven for a lifting element concentrated at a
polnt on the axise.

INTRODUCTION

The baslic theory of boundary corrections for ean open wind tunnel
was glven by Prandtl many years ago (reference 1) and has since been
used with reasonable success. The Infinitely long open Jet that was
assumed in Prendtl's analysis , however, hes been frequently questioned
as an adequate representation for an open wind tumel, which normally
hes a relatively short Jet betweent closed entrance and exlt regioms.
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The present exemination of the Problem was occasioned by the need for
boundary corrections for tests in the Langley full-scale tummel of a
large helicopter, of which the forward edge of the rotor dlsk reached
almost to the mouth of the entrance bell while the rear edge approached
the exit bell. Previous studies (reference 2) had shown that the
Prandtl theory wae satisfactory for a wing in the usuwal position in the
tunel (about 20 feet downstream of the entrance) 3 but 1t was felt that
this simple theory was inadequate for such far forward and rearward
locations of the lifting surface, and that same further development was
desirable. The only previous analysis bearing directly on the problem
seemed to be that of reference 3, which considered a 1lifting element
concentrated at a point on the axis of a circular open tuwmel of finite
Jet length; however, the treatment therein was not rigorous, and was
justified only by a samewhat heuristic discusslon, so that i1ts general
applicaebility was not obvious. Other studies treated elther two-
dimemsional or axlally symmetrical conditions (references U4 and 5) and
also did not consider the closed exlt region, so that the extent of
their applicebility to the present problem was not at first apparent. A
gimilar Germen wertime report (reference 6), which did not become availlable
until after the present paper was written, would have been more useful
in this respect because of the gemerality of its physical discussion.

Because of the particular shape of the tumnel cross section, a
reasonably simple solution in terms of avallable fumctions seemed unlikelys
accordingly, the initial effort was directed toward defining the problem
in such a way that 1t could be solved by analogy methods In an electrilcal
tank. Identification of the necessary boundary canditlons appeared at
first to be samewhat perplexing; however, after recognition of scme of
the basic physical phenomena, the boundary conditlons were readily
clarified. The problem is thus considesred now to be fairly well under-
stood, at least insofar as 1t can be considered linear and wminfluenced
by turbulent mixing at the free surfaces or by the irregular nature of
the flow at the exit. As wlll eppear later, however, grave technical
difficulties exist in the exact solubtion by electrical-analogy methods,
so that, for example, actual evaluatlion of the tumnel interference for
the large helicopter in the Langley full-scale tumnel, which problem
instigated the present research, has not yet been accamplished.

After the bowmdary conditions were clarified, amalytical methods of
solution were developed for two-dimensional and circular open tunmnels.
These studies have been cambined with the discussion of the boundary
conditions and the electrical analogles to form the present paper, which,
it is hoped, will serve to clarify basic concepts and establish a sound
basis for any further worke. ’

The report is divided into three parts. In part I, the bowndary
condltions are defined and discussed for the open wind tumnel with closed
entrance and exlt sections; and an outline is given of suggested electri-
cal analogies appliceble to the problem. In part IT, enalytical
solutions are given for various two-dimensional open-tunnel types,
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together with numerous calculated results. In part ITL, a method of
solution for the circular open tumnel is given, together with numerical
results for the case of a lifting element concentrated at a point on the
axis of the tunnel. The treatment in every case is a linear one in which
deformation of the Jet boundary i1s considered to be small.

The parts were essentially independently prepared. Messrs. Gardner
and Diesendruck contributed the analysis of part IT. Mr. Eisenstadt
contributed part ITI. Dr. Katzoff contributed part I, and, in the absence
of the others, prepared the numerical results of part II, made several
minor revisilons, and served as general editor of the whole.

/7

I - BOUNDARY CONDITIONS AND

ELECTRICAL ANALOGIES

In part I, boundary conditlions for an open wind tunnsl are discussed
wlth speclal reference to the effects of the closed entrance and exlt
sections. Tt 18 shown that the veloclty on the free surface is not
necessarily equal to the veloclty far upstream in the closed portion and
that cross-flows may exist in the free surface, unlike the case of the
infinitely long open Jet. A basic condition - analogous to the Kutta-
Joukowskl condition for the flow at the tralling edge of en airfoil - is
that the velocity be continuous at the entrance 1lip. Electrical analogles
that might be used for solving the flow in open wind tumnnels are outlined.
Two types are described - one in which electrical potentiel corresponds
to veloclty potential, and another in which electrical potential corre-
sponds to acceleration potential.

BOUNDARY CONDITIONS

Résumé of Prendtl's theory.- In Prandtl's original discussion, in
which the entrance and exit regions are neglected, the tumnel is con-
sidered as an infinitely long cylinder on the entlire surface of which the
pressure 1s constant, whence, by Bernmoulli's law, the velocity on the
surface i1s constant. If this velocity is considered as the sum of the
undisturbed tunnel velocity U and a small perturbation velocity (u,v,w)
due to the presence of a body in the Jet, the condition is then

that (U + u)2 + v + ¥ & U2 + 2Uu = Conetent, from which it is concluded
that u is constant over the entire surface. Furthermore, since u is
obvliously zero far in front of the body, it must be zero over the entire
surface. .

A corollery is that, on the Jet surface 5 ‘the perturbation velocity
normal to u (that is, the circumferential velocity) is also zero, as 1s
readily shown from a consideration of the rectengular path SPQR on the

surface of the Jot. (See fig. 1(a) .) As has just been shown, the
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veloclty component w parallel to the lines SP and QR is zeroj hence,
the perturbation potentials at points P and Q are the same as at points S
and R, respectively. If points S and R are far upstream of the body
their potentials will be equal, so that the potentials at points P and Q
are equal. The perturbatlion potential is thus wmiform over the entire
surface, and only perturbation veloclties normal to the surface can exlist
at the surface. )

Modification of basic concepts.- If the closed entrance region is
near the body, as shown in figure 1(b), the preceding discussion and
conclusions no longer apply.. Thus, although u must still be constant
over the entire free surface, 1t is no longer necessarily zero; that is,
the total velocity on the free surface is not necessarily equal to the
velocity far upstream in the closed portion of the tuwmmel. The +wo
velocitlies will, in fact, gemerally be wnequal except in special cases
where equality results from geomstrical symmstry of the arrangement.

(For exemple, 1f a horseshoe vortex 1s located in the horizontal plane of
symmetry of the tunnel, the values of u at the top and bottam of the
tunnel would be expected to be equal and opposite; but since wu must be
uniform over the surface, it follows that u = 0.5 Furthermore, the
veloclties in the Jet surface normal to u (that 1s, the clrcumferential
velocities) are, Iin general, no longsr zero (exnept for axially symmetxri-
cal flows, such as that produced by a source on the axis of a circular
tunnel) so that two surface points at the same longitudinal position,

as P! and Q' (fig. 1(b)) do not necessarily have the same values of the
perturbation potential.

Entrence-1ip condition.- Consider, for simplicity, the symmetrical
case of figure 1(b), in which the 1ifting element 1s on the horizontal
Plane of symmetry of the tunnel. Since u 1is zero on the free boundary,
the perturbatlion potential is constant alang the elements AB, CD,

EF, « . ., although, as Just indicated, 1t is not necessarily the same

for all these elements. This one boundary condition for the open section -
that the potential be constant along each of these elements - does not
suffice, however, to define the problem uniquely. In fact, as will be
obvious from the subsequent discussion of electrical analogies, the
rotentlals of these elements may be qulite arbitrarily assigned without
violating this condition or the boundary condition on the closed portion
of the turmel (that the normal derivative of the potentlal be zero at +the
wall). In order to avoid this lack of unilqueness, further conditions

must be sought. The most important of these is that the velocity be con-
tinuous (in particular, not infinite) at the entrance 1ip (points A, C,

E, « o «)o This condition takes cognizance of the fact that, because of
viscosity, the physical flow leaves the 1lip smoothly, Just as 1t leaves
the trailing edge of an airfoil; the condition is, in fact, strictly
analogous to the Kutta-Joukowskl condition for the trailing-edge of an
airfoil, which similarly tekes into account the basic viscosity effect

and provides uniqueness where otherwlse an Infinity of solutions would exist.
It is recognized that, just as the Kutta-Joukowskl condition does not
always suffice to predict airfoll 1ift very accurately, the corresponding
condition for the open tunnel may simllarly oversimplify the entrance-l1lip
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flow; however, as with the alrfoll, the condition is probably adequate
vwhere the flow 1s not subJect to an excesseive pressure rise on approaching
the 1ip. References 4, 5, and 6 used the conditlon, and reference 6, in
addition, discussed it from the physical viewpolnt and compared 1t with
the alrfoll tralling-edge condition..

Concerning the downstream end of the open section, the exit 1lip may
be considered to correspond to the leading edge of an alrfoil and no
effort need be made in an idealized flow analysils to eliminate infinite
values of u at this edge.

Jot contraction or expension.- It has already been pointed out that,
wilth a body In the Jet, the velocity on the free surface 1s not necessarlly
equal to the velocity far upstream in the closed portion. During the
course of the investigation, 1t was noted that solutions could be obtained
showing a difference between these two velocities, even when there was no
body in the Jet. Such a flow corresponds merely to a contraction or
expansion of the Jet, as indicated in figure 2. Thus, in figure 2(a), the
veloclty on the free surface 1s lower than the upstream velocity and
remeins s0 even as 1t approaches the exit, in spite of the gradual contrac-
tion of the Jet, because of the continuously increasing surface curveturs.
The velocity suddenly increases at the exit 1ip and finally i1s estaeblished
at a value greater than that of the upstream velocity. With reascnable
ratlios of entrance to exlt area, the flows of figure 2 may be readily
obtained experlmentally.

The significance of this expanding or contracting flow is that it
represents a solution that satisfies all the boundary conditions previously
discussed and is nevertheless undesirable. In order to avoid such
solutlons, a further condition must accordingly be recognized; namely ,
that the velocitles iIn the closed porticns far upstream and far downstream
of the open sectlon be equal.

It may be obJected that in the normal design of an open wind tumnel
the exit section 1s made larger than the entrance section. The purpose
of the Increased area is to allow for the reduced veloclty toward the
surface of the Jet resulting from turbulent mixing with the surrounding
8t11ll alr. Increasing the exit area by other than the correct amount will
result in the type of flow indicated in Ffigures 2(a) or 2(b), with a
corresponding veloclty gradient along the center of the tumnel. In any
potential-flow solution these vilscous effects cannot be considered.

Spillage.- When an alrfoll 1s tested at a high 1ift coefficient in
an open tunnel, the downward deflection of the Jet may result in appreci-
-able spillage from the lower 1lp of the exit, together with lack of contact
of the main flow with the upper 1lip. (See fig. 3(a).) The air lost by
gpillage 1s replaced by air (of , however, a lower total pRessure)
entrained in the exit. Even wilthout otherwlse considering the distortion
of the free surface, these flow characteristics might seem too much at
variance with the previously assumed characteristics to permit applica-
tion of the theories being discussed. The calculations of part IT for
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the two-dimensionsl open tumnel (that is , & rectangular tunnel with
closed sides but open top and bottom) show, however, very little differ-
ence between the tumnel-induced-downwash distributions for the twmel
with two exit 1ips and the tummel with one exit 1lip. That is , 1if
figure 3(a) ‘ig assumed to represent a Jtwo-dimenslonal flow, the fact
that the upper 1ip of the exit is out of the flow field so that the
lower 1ip takes over the entire burden of straightening the jet does not
greatly affect the induced downwash.

The effect of the exlt 1ip on the flow phenamena is the least clear
of the various phases of the present problem. For open wind tumnels
having essentlially unflared exlts, similar to that indicated in filgure 3(a) R
the suggestlons of the preceding paragraph are probably adequate. The
exlt of the Langley full-scale tummel, however, has a large bell mouth,
and when airplanes are being tested at high 1ift coefficients a downward
deflection of the air off the lower part of the bell, roughly as indicated
In figure 3(d) , occurs. Whether the previously suggested concepts or,
indeed, any linear theory can serve satisfactorily for this case seems
questionable.

Unequal surface pressures.- An interesting method of avoiding
splliage suggests litself In the case of the two-dimensicnal open tumnel:
If the space below the tuwmmel is Inclosed, an excess pressure willl be
built up in this space, compared with the pressure in the space above
the upper free surface, so that the flow willl be pushed up sufficiently
to eliminate the splllage and ensure precise contact of the lower free
surface with the lower exit 1lip. (See fig. 3(c).) The extent to which
a free two-dimensional Jet can be deformed by a pressure difference
across 1ts boundaries, or, stated differently, the extent to which a two-
dimensional free Jet willl deform in order to follow the only available
prath, 1s indicated by the smoke-flow photograph in figure 4. The setup
conslsted merely of a two-dimensional open Jet wilth entrance and exit
sections displaced vertically relative to each other, arranged between
transparent slde walls, and provided wlth enclosed spaces above and below.

Dotalls of interest in the figure, In addition to the Jet
deformation, are:

(1) Separation of the flow from the upper 1lip of the exlt, because
of the large angle of entry. A small bell mouth at the exit 1lip might
have prevented such separation.

(2) The rough flow on the upper surface at the entrance, compared
with the smooth flow on the lower surface, reflects the fact that the
boundary layer approaching the entrance is subJected to & rising pressure
on the upper surface and a dropping pressure on the lower surface.

(3) Because of twrbulent mixing at the free surfaces, a certain
amownt of the air iIn the closed chambers ebove and below the Jet is

entrained in the Jet. An equlvalent quantity must be released, or
skimmed off, at the exit in ordpr that the total quantity in each chamber
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remain constant. This circulating mechanism results in the apparent
overflow at the two exit lips. The return of the skimmed-off part to
the Jjet surface can be seen at the bottom of the photograph.

Tunnel without a closed exlit.- Some mentlon 1s made in the subse-
quent discussion of the hypothetical open tumnel having a closed upstream
entrance reglon but no closed exlt region, the open section thus extending
downstream to infinity. Calculations for such an arrangement (see part II)
are generally slmpler than for the actual tunnel with the closed exlt,
and give very nearly the seme answer, provided that the reglon of
interest 1s much closer to the entrance than to the exlt, as is usually
the case. For thls arrangement, solutions with an arbltrary contraction
or expansilon of the Jet cannot exist, so that no effort need be made to avoid
them. The solutlon for the general umsymmetrilcal case, however, will
show the Jet veloclty downstream at infinlty to be different from the
velocity upstream in the closed part. The possibility that, In the two-
dimensional case, different pressures might be assumed on the two free
surfaces still exists for thils type of tummel, but the resulting Jet will
have a constant curvature after leaving the nelghborhood of the body.

An upstream condltion for the "inf:!ni‘bely long" open tunnel and a
correction to the results of reference 8.- In many discussions of the
two-dimensional open twmel, the set of images indicated in figure 5(a)
is used to satisfy the boundary conditlom that u = 0, and the resulting
flow shows en upflow in front and an equal downflow in back, with no
Induced downwash at the wing itself. Actually, however, if the Jet
1ssues fram a horizontal closed entrance ~ no matter how far upstream -
it will remain essentially horizontal (because 1t is not subJjected to
any vertical force) until it reaches the wing. (See fig. 5(b).) In
order to eliminate the undesired upstream upwash, a uniform downwash
should therefore be added to the solution indicated in Ffigure 5(a).
(compere reference T, pe 304.) Addition of this downwash does not
affect the boundary conditions, since u 1s still zero at the boumdary.
This case 1s discussed quantitatively in part II, where it is shown that
the entrance-11lp condition automatically provides the correct answer.

Among the rectengular wind tumels for which correctlons were
given in reference 8 i1s a type with closed sides but open top and bottom.
The calculated corrections for approximately square cross sections are
approximately equal to those for the completely closed tunnel, a sur-
prising result In view of the absence of any top or bottom caonstraint.
The result 1s actually in error, as was dlscovered in an expsrimental
effort to verify it (reference 9). In seeking to explain the errors
the author of referemce 9 pointed out that the lmage system used in
reference 8 should have included an infinite row of vortices at infinity,
and he showed how, by teking into account this row of vortices, the
correct answer could be obtained. It could not be shown, however, that
the extent of this row of vortices 1s of a higher order of infinilty than
1s thelr distance from the orlgin, as is necessary if their effect is to
be consldered. The msthod of the preceding paragraph thus appsars to be
much simpler and more rigorous In such cases then 1s a discussion of the
image vortices at infinity. One simply observes that the image Bystem




A e —

8 , NACA TN No, 1826

of reference 8 provides an angle correctlon factor & of 0.25 for the
flow far upstream of the wing, whereas & should be zero far upstream;
a correctlen of -0.25 should therefore be added to all valuss of B
camputed by this Image system for points within the tunnel.

Summary of boundary condlitions.- A basic physical characteristic
of the flow is provided by the comditlon that the velocity be continuous
at the entrance 1ip, which also helps to provide umlqueness. The
velocity on the fres surfece 1s not necessarlly the veloclity far upstream
iIn the closed portlon; in fact, for the two-dimensional case, 1t 1s even
possible for the pressures on the two free surfaces to be different fram
each other. Equallity of the velocitles In the upstream and downstream
closed portlions has been recognized as an additlonal condition.
Negleocting the upper portion of the closed exlt may be desirable 1f the
flow 18 so depressed that 1t does not mske contact with the upper part
of the exlt. Neglecting the entire closed exit reglon may appreciably
simplify the problem without Introducing excesslive lnaccuracy 1f the
reglon of Interest is much closer to the entrance than to the exit.
In general, adequate treatment of the exlt (for large 1ift on the body
in the tummel) seems very wmlikely.

The dlscussion In the precedling sections has concermed mainly the
physical flow conditions, and relatively little interpretation in terms
of bowndary conditions on the perturbation potential has been given,
although such formal Interpretation would appear & trivial task. The
reason that this extenslon has not been made is that, in a number of
Instances, as will appear subsequently, slight modifications of the basic
viewpoint, leading to somewhat modifled boundary comditions, are desirable
for convenlence of solution. Accordingly, the statements of the bowmdary
conditions on the perturbatlon potentials wlll be glven when the solutlions

are dlscussed.

SUGGESTED ELECTRICAL ANALOGIES

Velocity-Potential Analogles -

Bagic concepts of the analogles.- In the analogies to be discussed
in the present section (nome of which have yet been constructed) , the
Perturbation veloclty potential in the 8pace within the wind tunnel is
considered analogous to the electrical potential in a dilute electrolyte
solution contained in a vessel of the seame shape. An insulating material
such as Bakelite, the conductivity of which is negligible compared with
that of the solution, provides a boundary where the normal potential

gradient % is zeroj and a metal, the conductivity of which is practi-

cally Infinite relative to that of the solution, serves as a constant-
potentlal boundary along which the longitudinal gradient %{’ is zero.
b

In such a setup, current is analogous to velocity except for a difference
in sign (in the usual convention, current flows down a voltage gradient
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whereas air flows up a veloclty-potential gradient); in order to remove
this difficulty, the sign convention for electrical potential is reversed
in the following discussion.

For greater clarity of exposition, the two-dimensional analogles are
treated in detall, the three-dimensional analogles appearing as reasonably
obvious extentions or modifications. It will be remembered, however, that
any application will be found in three~dimensional problems, inasmuch as
most of the two-dimensiomal problems can be solved analytically.

A two-dimensional vortex may be represented by two long metal plates
peparated by a thin insulator. (See fig. 6(a).) A flow corresponding
to a vortex located at the edge of the plates is set up by applying a
difference of potentlal across the plates. If the perburbation flow
that results fram the presence of the vortex in the tumnel has a hori-
zontal velocity camponent, thls representation is no longer adequate
because it requires the potential to bs uniform along each plate. Rigor
in this case would require that the plates be composed of a number of
separate sections, with each pair separately activated. (See fig. 6(b).)
In this way 1t 1s possible to provide a potential difference between
upper and lower surfaces that is everywhere equal to the desired circula-
tion, without requiring that the potential be wmiform along the entire
upper surface or lower surface. A horizontal velocity component normally
occurs only when the 1lifting vortex 1s asymmetrlcally located in the
tunnel. For simplification, only the simpler representation of figure 6(a)
is used in the remaining sketches.

The element of 1ift in three-dimensional flow is the horseshos
vortex of zero span, which 1s the same as a semi-infinite line of doublets.
It may be represented by a palr of long narrow mestal strlps separated by
an insulator. (See fig. 6(c).) As in the two-dimensional analogy, if
the 1lifting element is asymmstrically located in the fleld the strips
must be made up of short pleces, with each palr separately activated.
The horseshoe vortex of finite spen is represemted as in figure 6(d),
provided there are no appreclable perturbation velocltles 1In its planse.

Evaluation of Interference welocities.~- The vertical velocity
component In the turmel corresponds to the vertical voltage gradient in
the electrolyte, which can be determined by measuring the voltage differ-
ence between a palr of short wlre electrodes mounted one above the other
a fixed distance apart. The tummel interference at any polnt is foumd by
measuring this voltage differencs (relative to that across the two plates
representing the vortex) first in the simulated tunnel and then in a
large tenk for which the boundary Interference is either negligible or
go small that 1t can be adequately computed by simple methods. Since
the theoretical flow field for the second case 1s known, the ratio of
these two gradients, together with the distence from the pair of wires
to the 1lifting vortex, should suffice to evaluate the boundary interfer-
ence. The distance between the pair of wires need not be measured
because only the 'ratio of the gradients 1s required. Similarly, the
exact design and dimenslons of the simulated 1ifting vortex are of no
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significance, provided the gradients are determined at reasonable
distances from it. In general, boundary interference at the vortex itself
cannot be found directly by this method, but may be determined by
Interpolation between or extrapolation from nelghboring points.

Two-dimensional closed-open tummel.- For simplificetlion of the
namenclature, the open tunnel with closed upstream region but without a
closed exlt is deslgnated the closed-open tuwnel. The open tunmnel with
closed upsiream and downstream reglons is designatbed the closed-open-
closed tummel.

Figure T(a) illustrates the setup for a two-dimensional closed-open
tunnel with a vortex on its center line. Shaded lines indicate

insulating boundaries, where o _ 0, and heavy unshaded 1lines indicate
2 'a—I-L >

metal boundaries on which ¢ 1s constent. The upstream closed portion
should be so long that the potential is essentlally uniform at its
upstream end; the length indicated on the flgure should suffice. The
open region should similarly be so long that the vertical flow between
the vortex strips and the boundary strips no longer changes with distance
downstream; again, the length indicated on the figure should suffice.
From the condition of veloclity continuity at the entrance lips and the
fact thatb %i 18 zero along the free bowndaries, 1t follows that %‘;
must be zero at the edges of the two closed boundaries. The potentials
on the two free boundaries must, therefore, be adjusted umtil the differ-
ence between the potential of each and the potentlal of a thin feeler
electrode Just upstream of its edge is zero. For the symmetrical condi-
tion shown, the single variable voltage source Indicated will provide

Zexro %:—2 at both edges simultansously.

Figure 7(b) illustrates the setup for the two-dimensional closed-
open tumnel wilth the vortex in an off-center positian. A single variable
voltage source across the two free boundarles is now no langer capable
of simultaneously satisfying the continuity condition at both edges, so
that an additionsl varieble voltage sourte and an upstream electrode
are required. The current in the closed part of the tunnel flowing into
this upstream electrode corresponds to an upstream perturbation velocilty.
This upstream perturbation veloclity comstitubtes the previously mentioned
difference between the veloclty far upstream in the closed part and the
velocity on the free surface. The concept here 1s slightly at vaxriance
with previous discussion, which considered a perbturbation velocity along
the free surface, with the far upstream veloclty appearing as the
undisturbed velocity U. As the analogy is set up, however, no pertur-
bation velocity may appear along the free surfaces because they are at
constent potential; hence, the total veloclty on the free surfaces must
be considered as the undisturbed veloclty U and any difference between
this velocity and the veloclty far upstream appears as an upstream
perturbation velocity. As appears in part IT, thls viewpoint is also
found convenlent in the analytical solution of these problems.
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Two~dimensional closed-open-closed tunnel.~ The setup for the two-
dimenslional closed-open-closed tumnel with a vortex on the center line
(fig. 8(a)) is an obvious modification of the corresponding setup for
the closed-open tunnel. The sasme would be true for the off-center vortex
except for the necessity of satisfying the condition that the velocities
in the upstream and downstreem closed reglons be equal. Thus, the setup
of figure 8(b) provides an upstream perturbation velocity but no down-
stream perturbatlion veloclty, and cannot, therefore, solve the problem
completely. An additional flow, found by the setup of figure 8(c) must
be included. An electrode is here located at both the upstream and
downstream ends, and the potentials relative to the free boundary are so
adjusted that the entrance-1ip conditlon 1s satisfied. It is apparent
that in order to satisfy this condition the downstream current flow will
be much greater than the upstream currént flow; that is, the downestream
perturbation velocity for a contracting or expanding Jet is much greater
than the upstream perturbation veloclity. Because of this difference, a
sultable amount of the flow of figure 8(c) may be added to that of
figure 8(b) to produce equal upstream and downstream perturbation
velocities.

Displacement of the free surfaces.- The current density normal to
the surface of a metal plate representing a free surface is proportional

to %%— and corresponds to the local vertical perturbation velocity.
The total vertical displacement at a polnt on the free surface is then

given by %2 dx Integrated from the entrance lip to the point. In

v
perticular, the Integral along the entire lower free surface of a closed-
open-closed tunnel represents the displacement at the exit 1lip and it
may be measured by meens of an ammeter in the line that goes to the
lower metal plate.

If the pressure on the lower free surface can adjust itself so
that the displacement at the downstream end is zero, the perturbation
velocity at the lower surface will be different from that at the upper
surface. If the perturbation velocity on the upper surface is taken as
zero, that on the lower surface will be negative, so that the potential
on the lower surface must drop wniformly from entrance to exit. Such a
variation could be accomplished if the lower surface were represented by
a number of short metal strips instead of a single plate.-

Three-dimensional closed-open and closed-open-cloged tunmels.- The
analogles for the three-dimensional tunnels are obvious modifications of
those for the two-dimensional tunnels. The free boumdary may not be
simulated by a single metal cylinder because, as was previously noted,
different elements of the free boundary do not have the same potential,
although the potential is comstant along each element. The free boundary
must thus be simulated by a number of longitudinal metal strips,
insulated from each other, with a feeler electrode immediately in front
of each. When the 1ifting element lies In the horizontal plane of
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symuetry, the entrence-11p condition may be satisfied without an additicnal
electrode. If the lifting element 1s not in the horizontal plane of
symmetry, an upstresm electrode will be needed, with the potential of

each strip adjusted relative to this electrode. For the wmsymmetrical
closed-open~-closed analogy, the requirement that upstream and downstream
velocities be equal necessitates further megsurements with a setup
corresponding to that of figure 8(c).

Acceleration-Potential Analogles

Bagic concepts of the analogies.- The pressure has the properties
of a potential - designated acceleration potentlal - in a fleld consisting
of a small perturbation flow superposed on a wniform stream. If the
pressure in the umdisturbed stream 1s teken as zero, then the perturbation
velocities are related to the pressure by the followlng equations:

X
-lft-gﬁdt---l—f d 2
T p X T o0 ox -~ U

- 00

where

o) density
t time

D pressure

Since, by the first equation, u is proportional to p, 1t is simpler
merely to consider the perturbation velocity wu itself as the potential,
with v and w given by the following equations:

v =J[YK'%§;dx
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The necesslty of performing an Integration in order to determine v or w
is a basic disadvantage of the acceleration-potentlal analogy campared
with the veloclty-potential analogy In which v and w are measurable
directly.

In the snalogles to be discussed in the present sectlon, the pertur-
bation velocity u 18 considered analogous to the electrical potential
in a dilute electrolyte solution. A metal serves as a bowndary along
wvhich u 1s constant, and the local Intenslty of current flowing into
it gives %1; an insulator serves as a boundary where g—g is zero. The
1ifting element in either two or three dimenslons is represented by a
pair of short metal plates separated by an insulator; when the upper
plate is maintained at a higher potentlal then the lower plate, the
errangement represents a thin airfoil with suction (large wu) on its
upper surface and pressure (sna:l_'l_ or negative u) on its lower surface.
The current at each of the two plates should be the same in order that
the slope of the airfoll surface (proporbional to v) be the same on
both upper and lower sides. In order always to satlsfy this condition
the voltage source activating the 1ifting elemsnt should not be tapped
to any other electrode in the fleld.

Two~dimensional closed-open tumnel.- The setup for the two-
dimensional closed-open tumnel with the 1lifting element on the center
1ine is shown in figure 9(a). The walls of the upstream closed region

are represented by insulators, which establish that %1 =0 at every

x
point; hence, the condition that v = f_w g—; dx = 0 at every point on

the closed boundary is satisfied. The two free boundaries are repre-
sented by metal; and electricelly connecting them, as shown, satisfles
the further condition that they have the same potential (the same ).
The flow of current into the lower boundary then equals the flow of
current out of the upper bowndary, so that the ultimate downstream
value of v wlll be the same on both upper and lower boumdaries, as 1s
desired. In fact, for the symmetrical case illustrated, the value ’
of v will be the sams at all pailrs of opposite points on the two free
bounderies; so the boundaries will be everywhere parallel. No speclal
attention need be pald to the entrance 1ips - the entrance 1lip condi-
tion is autamatically satisfied since the potential u 1s continuous
at these polnts (a.l’chough the potential gradiemts at these points are
infinite) s

For the off-center position of the 1lifting element (fig. 9(b)) no
modification of the circuits is needed. The dlfference between the
potential in the upstreem closed region and the potential of the free
boundaries, which is the upstream perturbation veloclity u, ls measured
with the ald of the probe P.. As In the symmetrical case, the ultimate
downstreem value of v will be the same for both the upper and the
lower boundaries; however, it is no longer true that the two boundaries
will be everywhere parallel,and the ultimate width of the Jet will be
different from the width of the closed part.
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Two-dimensional closed-open-clogsed tumnel.- The value of v at the
downstream end of the free boundary is glven by the total flow of current
into the metal plate and, in general, is not zero. At the 1ip of the :
closed exit, howsver, v must be suddenly reduced to zero in order for -
the flow to follow the solid boumdary; hence, a short slectrode must be
added at the exit 1lip, and as much current must be forced out of it as
flows into the long electrods that represents the open bowndary; that is,

the Integral of du dx along the free boundary must be canceled at the

exlt lip. The setup (fig. 10(a)) therefore shows a voltage source to
supply this current and means for measuring and equalizing the current
flow Into adjacent electrodes. If these additional short slectrodes are
omitted, the setup will correspond to a tumnel the exlt sectlon of which
has been alined with the deflected jet (fig. 10(b)) because the condition

that %§'= O on the closed exit boundary would merely permit v to
remain at the value 1t had at the end of the free boundary.

For the off-center position of the 1ifting surface, a similar setup
is uvsed and, as before, probes in the regions far upstream end far down- -
stream are used to determine the potential wu in these regions relative -
to the potentiel of the free boundary. Since these potentlals far up-
gtream and far downstream will not be equal, an additional perturbetion =
fleld must be provided such that the sum of the two fields will have the
sems potentlael in the two reglons. This additionsl perturbation fileld,
which corresponds to a contraction or expansion of the Jet, is provided
by the setup shown in figure 10(c). It is clear fram this figure that -
the downstream perturbation potential is much greater than the upstream o
perturbation potential; this result corresponds to that indicated in the
veloclty-potential analogy.

The condition in which the pressure on the lower free surface 1s
higher than that on the upper free surface 1s easlly represented by
applying a voltage difference betwsen the two surfaces. {See fige. 10(d).)
The corresponding displacement of the lower surface, however, is not so

readily obtalned. The vertical veloclity at every point is L/\-Q-- dx, so
that the displacement at each point is k/ﬁ gE dx dx. In order to accom-~

v
Plish this integration ‘gg must be determined at points along the
¥

boundary, perhaps by breeking the long plate Into a number of short L
pleces and determining the current flowlng into each.

Three-dimensional closed-open and closed-open-closed tumnels.- The .

analogies for the three-dimensional tunnels are agaln obvious modifica-

tlons of those -for the two-dimensional tunnels. For the closed-open

analogy, the free boundary may be represented by a single cylinder of

metal (fig. 11(a)}. For the closed-open-closed analogy, the free boundary .
must be represented by a number of separate strips (fig 11(b)) in order

that the total current into each strip may be measured and an equal
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current forced out of the short strip immediately behind it. Contraction
or expansion of the Jet 1s represented as in the two-dimensional case;
but the setup that would correspond to different pressures along differ-
ent strips seems to have no practical significance in the three-
dimensional case.

Some form of this acceleration-potential analogy 1s probably the
most convenient for solving problems similar to that of the helicopter in
the Lengley full-scale tummel. Simply neglecting the exit, as with a
closed-open ‘tunnel, permits the free surface to be represented by a
single sheet of metal and eliminates any measuremsnts of curremt flow to
or from the surface. Improved accuracy should be attainable by cutting
the sheet into two parts with two short strips at the rear. (See
fig. 11(c).) The need for many strips seems wmlikely, at least in view
of the previously menticned uncertain definition of the physical flow
in the reglon of the exit.

Correspondence between velocity-potentisl and acceleraticon-potential
analogies.- As has already been Indicated, the acceleration potential 1s
ldentical with the x~camponent of the perturbatlon veloclty and is hence
morely the x~derivative of the perturbatiom-veloclity potential. It is
of Interest to point out the related fact that the acceleration potential
analogies are, In a sense, the x-derlvatives of the velocity-potential
enalogies. For example (see fig. 12),

(1) For the velocity-potential analogy, an infinitely long double
layer represented a lifting elemsnt located at its forward edge. The
difference between two such double layers, of which one 1is shifted
slightly relative to the other, is merely the short double layer that
was used In the acceleration-potential analogy.

(2) For the velocity-potential amalogy, the free boundary consisted
of constant-potential strips on which the potentials were so adjusted
that the gradient wes zero at the leading edge. If each strip is now
shifted and subtracted, there remains a long strip, with a short strip
at the front and back. Since, in the veloclty-potential analogy, the
gradlent was’ zero at the entrance 1lip , the short strip at the front may
be neglected. The remainder corresponds to the arrangement used in the
acceleration-potential analogy, and the fact that the total current after
the subtraction must be zero corresponds to the fact that the total
current out of the short strip must be made equal to the total current
into the long strip.

(3) When the 1ifting element was off-center, the velocity-potential
analogles required electrodes upstream and downstreem, with uniform
current flow along the upstresm and downstream closed reglions. That the
gubtraction eliminates these current flows corresponds to the fact that
no uﬁstream or downstream electrodes are used In the acceleration-

potentlal analoglesoe
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Technicel Difficulties

It should be pointed out that the analogies hers described may be
rether unwileldy, experimentally. ZIEven for the simplest types of analogles,
the literature indicates considereble wmcertalnty as to the most satis-
factory electrolyte and electrode materials, and apprecieble difficulty
in balancing capaciltances (alternating current is generally used in
analogles, In order to ninimize polarization at the electrodes). In the
present analoglies, the need for separate current sources that are exactly
In phase and the large capacltances that willl certalnly characterize the
vortex and the open-boundary representations should greatly camplicate
the technique. Perhaps the use of direct current instead of altermating
current, with nonpolarizing electrodes (as platinized platinum), would
be a more practical approach In this respect. Simultensously satisfying
the entrance-1ip condition at a number of points around the inlet (or
satlsfying the corresponding exlt comdition for the acceleration-
potential enalogles) may also turn out to be very difficult.

RESUME OF PART T

The most significant points of the preceding discussion of open
wind tummels and thelr selectrical analogies are as follows:

1. Continuity of velocity at the 1lip of the entrance cone is a
basic characteristic of the flow in an open wind tumnsel.

2. Bquality of the velocities in the upstream eand downstream closed
regions is a further conditlon on the tumnel flow If extraneous longi-
tudinal pressure gradients are to be avolded.

3. The veloclty on the free surface need not be the same as the
veloclity In the closed upstream region. In general, the two velocities
are the same only when the 1lifting element 1lles in the plane of
symmstry of the tunnel.

o

4. For the two-dimensional open tunnel the velocities on the two
free surfaces need not be equal. If the space below the lower free
surface is closed off, the pressure on the lower free surface will adjust

1tgelf so that the dlsplacement at the exit 1ip is zero.

5. Conslderable wncertalnty exists wlth regard to conditions at the

exlt or the mathematical equlvalents of these conditions. Correspondingly,
certain cémpramises In complying with the ldealized downstream conditions

may be Justified 1In a determination of boundary interfersnce.

6. In any analysis that neglects the closed entrance and exit regioms,
the condition of zero upstream Induced flow must be retained.
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T+ BElectrical analogles of either the veloclty-potential or the
acceleration-potential type mey be devised to correspond to most of the
problems dlscussed.

8. In electrical analogies that represent veloclty potential by
electrical potential, the conditlion of continulty at the entrance 1lp
appears troublesoms, especlally for three-dimemsional timnels; however,
the exlt conditlons are easily represented. :

9. ITn electrical analogles that represent acceleratian potential
by electrical potentlel, the entrance-1lip condition is automatically
satisfied, but fulfiliment of exlt conditions is troublesame. Rough
approximation of the exlt conditions may, however, be adequate for many

PUrpoOses «

10. Acceleration-potential analogles are experimentally simpler
than veloclty-potential analogles.

IT - TWO-DIMENSIONAL TUNNELS

In part IT, boundary-induced velocities in two~dimensional open
tunnels are derived with specilal reference to the effects of the closed
entrance and exlt regions. The cases treated are:

(1) Tunnel with a closed entrance (upstream) region but without a
closed exit reglon

(2) Tumnel with a closed entrance reglon but with only one exit
1ip (corresponding to a condition in which the downward deflection of
the flow is so large that the flow mekes contact only with the lower
exit 1ip)

(3) Tunnel with closed entrance and exit reglons

(ll-) Seme as case 3, but with different pressures on the two free
surfaces

Numerical results are glven for all cases.
SYMBOLS AND DIMENSIONS

Each tunnel 1is 1ldealized as a strip of uniform height h, having a
streem velocity V, and containing a point vortex of strength TI'. For
simplification of the present development, lengths and veloclties will
be made nondimensional by dividing by h and V, respectively, and the
vortex strength will be made nondimensional by dividing by hV.

e e o e e e T A ———— T T —— o e T o =t et~ ———— m— —r——



18 NACA TN No. 1826

Essentially, then, the solutions will be developed for a vortex of

strength T' = h—I;T in a tunnel of unit height; and in the following

list of symbols the lengths in the complex planes are in terms of i,
and the complex velocltlies are in terms of V:

h tunnel height
v ' tunnel velocity

t complex varisble of physical plane (& + in)

gl location of vortex in E&-plane

Z complex varleble of transformed plene (x + iy)
Zq location of vortex in =z-plane

q complex velocity in physical plane (u - iv)

Q complex velocity in transformed pleme (u - 1v)

A, B, C, M, ¥ real constents

T vortex streng‘bp,

re nondimensional vortex strength (.hLV>

qi(g:gl) induced complex velocity at ¢ when vortex is at €4
a1.(&) induced complex velocity at §1

a absclssa of exlt 1ip in transformed space

Wy a complex velocit:y in the form of an elliptic integral

of the first kind

a camplex velocity in the form of an elliptic integral of

W
the second kind
w3 a camplex velocity
1 variable of integration

G function defined by equation (2)
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K, K' complete elliptic integrals of the first kind, with
: modvlus 1/a .
E, E! when not followed by parenthesis, complete elliptic

integrals of the second kind, with modulus 1/a;
with upper limit indicated in parentheses,
incomplete elliptic integrals of the

second kind, with modulus 1/a

¥, F! incomplete ellipitlc Integrals of the first kind, with
modulus 1/a, and with upper limit indicated in
parentheses

R.P. real pert

T.P. imaginary part

c alrfoil chord

) alrfoil 11ft cosfficient

€ tumel-induced angle, radlans

, horizontal perturbation veloclty at free boundary

Subscript

1 Induced

BOUNDARY CORDITIONS

The two-dimenslonal turmels dlscussed are considered to have their
fixed and free boundaries parallel to the real axis, with the main tumnel
flow fram left to right. The physical plane (in which lengths and
velocities have bean made nondimensional as jJust described) will be
designated the {-plane, with the complex perturbation velocity u - iv,
or g(t), subject to the following conditions:

(1) on each fixed (or closed) boundary, I.P.g(f) =-v=0
(2) On each free (or open) boundary, R.P.g{f) = u =0 or a constant

(3) At each 1lip of the closed entrance section, g({) is continuous
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CASE 1 - CLOSED-OFPEN TUNNEL

Total perturbation velocity. - By the transformation

-

z = otb (1)
the tunnel in the {-plane , represented by an infinitely long strip of
wit height, 1s transformed to the upper half of the z-plane. The
correspondence between points is shown in figure 13.

The complex velocity (rather thesn the more usual camplex potential)
1s considered to be retained in the transformation, and the problem is
thus to find a function Q(z), where

u - iv = Q(z) = q(t)
such that

(1) On the closed sections of the boundary, that 1s, for z real
and |z| <1,

I.P.Q(z) =0

(2) on the open sections of the boundary, that is, for 2z real
and |z| > 1,

R.P.Q(z)

I
o

(3) For z = +1,

(@]

Q(z) =
(%) o(z) 1s finite at infinity

; Consider the complex velocity G(z) corresponding to a vortex at zj
and its reflection at z7y:

a(z) = 1<z } z1 2z } Z]) (2)

This function, which is of order 1/z2 at Infinlty, satisfies condi-
1 - z=,

tions (1) and (4) but not (2) and (3). Functions of the form
zyl - z2 , . « . satisfy conditions (1), (2), and (3). At infinity,

\JL - 22 1s of ovder z amd z\[l - z2 18 of order z2; therefors,
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oither of the products G V1 - z2, Gz\/1 - z2, or a linear combination
of the two satlsfies the four condlitlons and has a pole of the first
order at zq. These facts suggest that the deslred velocity fumectian
is of the form °

Z"'Zl

Q(z)=1(Z}ZI- L _\a+B2)\1-2 (3)

where A and B are as yet undetermined real constants.

The values of A and B are to be determined such that the pole
at 2z7 represents a vortex of strength .I'' in the ¢&-plane. Thus

r'=at) at -Pate) & az = 19a() &

where the integral is teken about the point 2. By Cauchy's integral
formula

______Mz (1)

r' = -2(A + Bzj)
Z1

The values of I' and 2zq are known, so that this complex equation
cen be solved for the two resl constants A and B. Substituting
these values in equation (3) will thus give the desired camplex velocity
function. .

Tumel-interference velocity.- The tunnel-interference velocity is
defined as the differemce between the total perturbation veloclty q(g)
due to the presence of the- vortex In the tunnel and the veloclity due to
a vortex in an unbounded medium. That is, the tumnel-interference
velocity qi(t,81) is

altt) = (725 - 72g) G+ 2 ey ©

1

If the vortex is on the axis of the tummel, that is, if &y = & + 55

then from equation (1), z7 = iyy, =2nd equation (4) gives
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, (6)
I

B =~
2/1 + ¥1°
i

If the point of evaluation is also on the axis (that is, { = & + 5

whence z = 1y), then

1, 1 71 2 + 1 ip!
qi<§'|— §l+'_> = "'il_" - + (7)
2’ -2 y2 - y12 y12 + 1 21):(5 '§]>

Thus, if the vorbtsx 1s on tne axls, the interference velocity at all
points on the axis has only a vertlcal component.

The interference veloclty at the vortex 1tself 1s the 1limit of
expression (5) as 2z approaches zj. The term containing z - Z3
offers no difficulties end 1ts limit 1s readily evaluated:

’ r'z
i \/ 2 1 \/ 2 1
- + - = - + - =
1im (a Bz)V1 ‘z 5y (a Bz]) 1 - 21 I

vhere the last equality follows fram equation (4). The remainder of
equation (5), after =(l - {1) is replaced by log -ZZI’ is

Tt
A+Bz\/l-z210 Z 4+ (z-3
A+ BNL -2 o =1(- ) 83 P32 - %

z Z
z - 21 2 log = (2 zl)log z

This expression 1s of the fom% for z = z7. Differentiating numerator

and denominator, according to L'H6spital's rule still leaves both egqual
to zero at z = zj (that the derivdtive of the dencminator is zero

at z = 27 1is obvious; that the derivative of the numerator is also

zero at z = z7 can be verified with the aid of equation (4)). A second
differentiation yields the following expression for the 1imit

as z approaches 2zj:
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2(A + Bzq)z 2
-(a + Bzp)V1 - z12. - .\/__1_2_1 + 2]3z1V£ - 272
1l - zy

2zl

i

This fraction can be greatly simplified by use of equation (), and the
result, added to the previously derived limit, gives the desired correc-
tion at the vortex:

g—>§l h'iyl

m  g4(¢,81) = q4(61) = [—— + — 2(1 - z12) +BV1 - 22 + rl”] (8) .

For the special case in which the vortex is on the tunnel axis (z = iy) 5
this expression reduces to the following form (after substituting for 3B
from equation (6)): -

_art a2
91<§ 2 1+ ylz (9)

Upstream perturbation velocity.- If the vortex is not on the tummel

axis, A will not be zero (compare equation (6)). The tunnel interfer-
ence velocity far ups'bream in the closed part of the tumnel is foumd by
putting ¢ =-w and z =0 in equation (5), which then reduces to

1 1 2Ay1
e 5 -2) - 3 |

which 1s rsel. For this unsymmetrical case, therefore, a finite longi-
tudinal perturbation velocity is found far upstream in the closed part.
As was pointed out in part I, such results appear because the problem
was set up so that the longitudinal perturbation veloclty on the open
boundary is zero. If the velocity far upstream in the closed part is
to be taken as the base, the result means merely thegt the longitudinal
velocity on the open boundary exceeds this base velocity by -—E—AJ-%-
Zl .

that there is a corresponding difference in pressure between the closed
part and the space surrounding the jetb.

and

e e . ———— A A P e T A et A 1 | o e gt et e s 7 T 4 —— ————— ——— —
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Limiting case of campletely open tunnel.- With increasing distance
of the vortex fram the closed entrance (that is, with increasing yi),

1
expression (9) approaches - %- As was pointed out in part I, the

image system normally used to satlisfy the boundary condition on an

infinitely long, open, two-dimsnsional tumnel produces no induced f£low
at the vortex itself, and only after introduction of the additiomal _,
condition that the upstream flow be horizontel is this value of - il

for the induced-flow correction obtained. In the present development ,
however, it 1s seen that the conditlon of continuity at the entrance
lips automatically tekes care of this conditiom on the upstream flow
directlon, even when the entrance and the vortex are infinitely far

apaxrt. ) )

No further discussion of the completely open tumnel will be glven
here Inasmuch as this case has been adequately treated by the method of
images. (See reference 6, p. 302.)

CASE 2 - TUNNEL WITH ONE FIXED EXTT BOUNDARY

Perturbation velocity.- As before, the transformation =z = on b

transforms the tunnel, considered as an infinite strip of unit height,
into the upper half of the z-plane. The correspondence between points
is shown in figure 14. The conditions on the camplex velocity Q(z) are:

(1) On the real axis, I.P.Q(z) =0 for -1 <z <1 and for z >a

(2) On the real axis, R.P.Q(z) =0 for z <-1 and for 1<z <a

(3) For z =41, Q(z) =0

(4) Q(z) is finite everywhere in the upper half-plane except
a and at z = z3. As noted in part I, Q(z) will be infinite

at
at a

nu

z
pA
The function G(z), given by equation (2), will again be used as a
factor that 1s real along the entlire real axls and has the desired type

- 52 - g2
of singulerity at zj. The functions \/H and z\/i—_—% change

from pure real to pure imaginary as 2z passes through *1 or through a,
and, furthermore, are zero at 2z = 11 and Infinite at z =a. At

Infinity they are of order zl/2 and z3/‘2 » respectlvely. Therefore,

- o2 -
L-2 ona G(z)-l—-?—
a -z a-z

as before, a linear combination of G(z
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satisfies the preceding conditions and has a pole of the first order
at z1. Q(z) is therefore of the form:

Q(z)=i<zl - =t (,A+Bz)i:—:2_ (10)

-2z1 zZ -2

The real constantse A and B are determined by the same condition as
before, which gives

2(A + Bzq) /1 - 21?

r'=- n Vi = | (11)

Tunnel-interference velocity.- The interference velocity gy(¢,¢q)

1s the difference between the perturbation velocity and the velocity due
to a vortex located at the same point in an wmbounded medium:

a6t = 17 - ) B\ A

z -2 2z-=2Z1 a- z en(t - &) (12)

This expression does not simplify appreciably if the vortex 1s located
on the axis, and the interference veloclity at a point on the axis due
to a vortex on the axis 1s not normal to the axis.

The Interference velocity at ths vortex itself i1s the limit of

expression (12) as =z approaches zj. ZProceeding as in the preceding
case gives:

_ [— r' I'a 1- z1° P'é;]
a3 (8y) = iE(l ) e B\/a e ovesy (13)

It may be shown with the ald of equation (11) that this equation reduces
to that for the closed-open tumnel as a goes to infinity.

CASE 3 - CLOSED-OPEN-CIOSED TUNNEL

Perturbation velocity.- The transformation 3z = e transforms the

tunnel space into the upper half of the z-plane with correspondence
between points as indlcated in figure 15. The boundary conditions on
the complex velocity Q(z) are:

e e e T e e e e e e o e
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(1) On the real exis, I.P.Q(z) =0 for |z| <1 end for [z| >a

(2) On the real axls, R.P.Q(z) =0 for 1< |z|<a

]

(3) For z =7%1, Q(z) =0

(4) Q(z) is finite everywhere in the upper half-plene except
at z =18 and at z = z3

(5) Q(0) = Q(»), (this equation corresponding to the condition
noted in part I that the perturbation velocities in the upstream and
downstream closed regions be the same) .

The function G(z) given by equation (2) is again used as a factor

- 52 - 52 - 52

of Q(z). The functions Il z z 1 z and 22 z satisfy
2 27 2 2’ 2 2
\(a -z a- - z a” - z

conditions (1), (2), end (3), and are of orders 1, z, and 2 at infinity,
reepectlively. By the same reasoning as before,

L1 a oy, L - 22
Q(z)—i(z_zl Z_EJD(A+Bz+Cz) SR (k)

The condition that the pole of the first order at z; represents a
vortex of strength I'' is:

oo - 2(A + Bz + Cz12) /l - 23° (15)
27 . a® - 212

Condition (5) 1s satisfied by equating the two forms of equatioa (1h)
for 2z equal to zero and equal to infinity. Thus

0 -3y

_°2y1 A

[z2[? @
-2y1 oy [L =~ 2°
lim Q(z) = lim (A+Bz+Cz)\2 5
Z >0 222 (z - z1)(z - Z1) a~ - z

= -2y31C
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whence, by condition (5)

-2y
l21|gL 2 m e
oxr
A -
C = a|z1|2 (16)

The complex equation (15) and the real equation (16) suffice for
evaluating the three real constents A, B, and C in equation (14).

Twnmnel-Interference veloclty.- The tumnel Interference veloclty 1s

n = 1ty - e od) g e ariiy Gn

-z z-'%Z

If the vortex is on the tunmel axis, that is, if z; = 1yj, equation (15)

glives
ﬁ
B - - P ,a? + yl?
2 1 +'y1?
: : f (18)
A
C =——
y1?
S

Comparing this last equation with equation (16); which reduces to ‘the
following form for 2z = iy,

e e e e e s e
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since, as 18 clear fram figure 15, a # 1. The interference velocity at
a polnt on the axis (z = 1y) due to a vortex on the axis is thus

I\
1 + 2 2 1
91<§+1)§1+‘1 =- AL 3’2 - -': 7L + T (19)-
2’12 7 -y 2VeR + 32 1+ 5,2 en(g - €1)

which is normal to the axis.

The interference veloéity at the vortex l1tself is the limit of
expression (17) as 2z approaches Zy . Proceeding as before glves

ll-z2 1z
+ (B + 20z7) AN

Illz:!.2 a2
\Iaz - 212 )-l-iyl

qi<§1>= L+ 2 <a2 _ leS(ZlL - 2,2)

(20)

For the case in which the vortex 1s on the axis (zl = iyl) the
normal velocity at the frese boundary ( Z =X, whore 1< x < a) is gilven
by

-

-2
Q(X) - 1(3: -liy i x +liy)>Bx\i2 -3

QAx) = 21y B ‘}‘2 - 1 (21)

or

CASE 4 - CLOSED-OPEN-CLOSED TUNNEL WITH UNEQUAL
PRESSURES ON THE FREE SURFACES

Boundary conditions.- As indicated in part I, the two-dimensional
closed~open-closed tunnel may develop unequal pressures on the two free
surfaces 1f a closed space exists below the lower free surface. Within
the 1imits of the present linear theory, this pressure difference corre-
sponds to superposing on the flow discussed in the preceding section an
additional perturbation velocity field Q(z) that

(1) Has no singularities within the tunnel

(2) satisfies the condition of continuity at the inlet lips
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(3) Has a horizontal component equal to, say, +1 on the upper free
boundary and -1 on the lower free boundary
(4) Has no vertical camponesnt on the-clesed boundaries
(5) 1Is zero at infinity upstream and d.ownstream

Rewritten as conditions on the complex veloci'by Q(z) in the z-plane
(fig. 15), these conditions become

(1) Q(z) has no singularities in the upper half of the z-plane
(2) a(z) =0 at z =%*1

(3) On the real axis, Q(z) = -1 for 1<z <a, and Q(z) = +1
for ~-a <z «-1

(4) On the real axis, I.P.Q(z) = 0 for |z| <1 and for Izl >a
(5) Q(z) =0 for z=0 and for 2z = w .

Outline of method;- Consider the followlng two fumctions of z:

o TR

2 _ 2
| s [\
0 1-z

They can be considered as camplex velocitfes having the following
properties along the real axls (compare reference 10):

wy 1s real between 1 and -1; between 1 and a, or between -1 and -a,
its real part is constant but an imaginary part is introduced; beyond a
or -a, the imaginary part 1s constent while the real part approaches
Zero, R'POW:L(Z) = ‘RoP-Wl( Z)’ -PoW’l(Z) oP-W’l( Z)

has the same propertles as w; except that beyond a and -a
its real part approaches o and -e, reapectively
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Maps of the two functions are shown in figure 16. It should
obviously be possible to find a linear combination of these two fumc-
tions, Mwy + Nwp, such that for 1<z <a

R.P.(Mwl + W) = -1
for ~a <z <=1

+1

R.P.(Mwl + ng)
and beyond a or -a

I.P.(Mwl + Fwp) =0
A simple additional function to be discussed subsequently i1s needed
to satlsfy the condition at infinity. The deslired veloclty function for
the closed-open-closed tunnel with wmequal pressures is thus of the form:

Q(z) = Mwy(z) + Twp(z) + w3(z)
The constants. M and N are derived In the two following sectlons.

Evaluatlon of Integrals.- In the following development, the modulus
of all the elliptic integrals is 1/a; the modulus will therefore not be
indicated in the symbols. In the d.esignations for the Incamplete
elliptic integrals, E, E' F, and F the terms in parentheses are the
upper limits of integra'bion. Then

- dz "
w1(1) = RePewy(a) = l \r(l : QXae = = 3K |
. 1 52
% (1) = R.Powr(a) =/; i—_T;- dz = aF
a
I.Powq(a) = dz
e ]; ;Kl - 22><a2 - 22)
which by the substitution z = (a - ) reduces to

= iK'

2 pear=
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a
f a2-Z2d_Z
1 1 - 22

which by the substitution z° = & - (a2 - 3,)12 reduces to

U}

I.P.wpy(a)

1 82 -1p
22
ia di

o &5

1 dil
ia/ 5 la > dal
_ 92 L ac - 1.2 -7
s A o |1

iaK' - iaB'

Solution of simultaneous equations for M a.%d Ne- With the aid of

the four formulas Just derived, the two previously mentlioned equations
In M and N may be written

Mg+ FeE = -1
a

-1;-‘K'+Nax'-NaE'=o

which are easily solved simultanesously for M and N. By introducing

the following relation between the complete elliptic Integrals (refer-
ence 11, p. 520)

EK' - KK' + KE' =2
2
the expressions for M and N are finally obtalned in the following
forms:

L

_ 28 |t
M—ﬂ(K E')
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Value of Mwy + Nwp at infinlty.- The constants M and N have

been determined so that I.P.(Mw) + Nw2) =0 at infinity; furthermore,
R.PMwy =0 at Infinity, as 1s clear from figure 16. Therefore, the
value of Mwy + Nwp at infinity is merely RePellw> at infinity. It

. 1s necessary to investigate this limit before choosing the form of w3,
because, as was previously noted, the purpose of w3 18 to
provide Q(z) =0 at infinity. The limlt may be written

l [
_ 2 _ 2 ,’ae_zz
R.P.NwE(w)_NL \gu+nl T dz

The first term is simply NaE. In order to evaluate the second term,
substitute 2z =%

2 _ 2
Nf a'; az
& 1-~-23z
o
_Naefl\’—-—l - 7'2.5‘-_7'
0 Va2 - 32 2

Na2 1 CL — 7'2) g
[, mHE

1

ey, e

The first term is -NeK. In order to evaluate the second term, 1t is
noted (reference 12) that

a V- 22 - )
a1 ;

12\/(1 - ?)(e? - ) ' \/(1 - 2)(a2 - 12) ' V@ - ®) (2 - 22)

- ———— - e e et ——— e e e s

. AN
I
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Transposing terms in this equation glves

2\ - 12)(a ~2) - 12)(a - 12) V:L --12

_% VG - 2)(e2 - )

whence

1
Na2 = I\Ia2

1 a1 ) a1
o BV(1- ®)a2 - ) o VG- B - 2
1
- /f_-f
Njc; @

_1?\/(1 - 22)(a2 - 1) ‘l
i 0

= NaK - NaE -

,,V(l - ze)ga? - 12) lz

i

The first two terms on the right are exactly canceled by the two terms
previously obtalned, so that the final result is:

: 1
lim R-PONWQ(Z) = 1im -.'f"'\l(l - 7'2)1(&2 = 22)
>0

Z—>co
2
= Lim NzJ(l - %)(1 - —12->
72— Z Z

2
= ljJIl NZ - %(8. + l)‘ ® o

Z —> 2

/
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Derivation of W3e= In order to cancel the effect of the

terms Mwy + Nwo at infinity, the function w3 must approach -R.P.Nwp(z)
as z Iincreases without limit. In addition, 1t must have no singularities
in the upper half of the z-plane, it must satisfy the condition of com=
tinuity at z = *1, it must be a pure real on the fixed boundaries and a
pure Imaginary on the free boundaries, and it must be zero at z = 0.

It 18 readily formulated as

2
W3(Z) = -Nz _]_.é_zé_
a - z

That this functlon satisfies the first condltion 1s readily shown by
writing it In a slightly different form and expanding the radical:

1im -Nz \j_—
Z—>

= 1im -Nz - ~ o s
Z—> ©

Camparison of this expression with that for lim R.P.ng(z) shows that
Z—>®

the difference between the two expressions approaches zero as =z

approaches Infinity. That the function satisfies the remaining conditions

is readily verified by inspection.

The complex velocity functlon for the closed-open-closed tumnel with
e qual pressures is, finally,

_ZK' 2-22dz+2K'zl"Z2 (22)
e [ 1o 22 ar 2V 2. 2
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or

o) = 2 - xR(e) - Bw) + 0 AL (23)
ae

where the modulus of the elliptic integrals is 1/a.

Induced velocity on the axis.- For the special cese in which z = iy,
the preceding equations for Q reduce to & samewhat simpler form. The
procedure will be only outlined here, inasmuch as the menipulative steps
are similar to those already described.

Replac z with iy In the expression for wj and then substi-
tuting y2 = %27 - 82 reduces the first term to

Bl - gy x! - Flf—x
T

\‘l+§

The same substitutions, together with the previously described technique
from reference 12 reduces the second term to

_2k'ly fi+ g2, K:_Fx<__1__ o g — L

7T 2
a2 2 a2

a
a!

The third term is found dlrectly as

21K' (1 + y2

225 o\, . 32
al
The total simplifies to the form .
Qiy) = Qﬁ—i -K'E' ——%T-?—>+ E'F! ——l———z (2k)
J
d + L + =
1 3,2‘ 1 a2
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Normal velocity and normal displacement at the free surface.- The
normal velocity on the free surface may be written in the followlng form:

I.P.Q(x) = Eﬁ_i(Kf - Er)‘f . ix _
= Ve 06D

X
1___ e ————
_ 21! g2 4, _ 2iK' (22 -1
T x -1 82x \Jl_ﬁ

By the substitution of x° = &2 - (82 - 1)72, the integrals are readily
reduced to standerd forms of incomplete elliptic integrals , and the
equation tekes the form

I.P.:%(x) - %IEE‘F,<£§_-_X_2> - Kl:gl(ﬁz - 3.2] - 2iK! Ix2 -1 (25)
<x<8a a- - a- =

XL
ax \’ =
yt -2

The normal displacement, or distortion, of the free surface is
found by integrating this expression along the free surface in the
physical plane:

X

Normal displacement at x = [ I.P.Q(x) at
1

=j;x I.P.a(x) i—;

The integral may be evaluated numerically; however, the third term
of TI.P.Q(x) is amenable to analytical treatment:

ﬁllf?
S
o) %H
R

1
1
" n
ol
lt-'d
1
=
/\
ml'\)ml\)
] 1
F Mo
SN
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At the edge of the exit 1lip, where x = a, this expression reduces to

21K'< ' Eﬂj)
- B! - =
72 a2
NUMERICAL RESULTS

In the following sections are described some numerical results that
were caomputed by the preceding equations in order to show the magnitudes
of the entrance and exit effects. It will be noted that, since the
complex veloclty has been made nondimensionel by dividing by V, the
component v is identical with the twmnel-induced angle ¢, In radians,
and the component u 1s the fractlonal increase in the horizontal
veloclty. The equivalence of the two ordinate scales indicated in the
plote of the results follows from the equation

v 2

Closed-open tunnel.~ Inm figure 17 are shown calculated values of

the induced downwash angle along the tunnel axis for varlous positions
of the 1lifting vortex along the axis. The flgure shows that for §_l = 1.0

end 1.5, the induced angles at the vortex itself (£ = 1.0 amd 1.5,
respectively) are almost exactly %, which 1g the value for an infinitely
long open tunnel; and, furthermore, the two curves are symetrical about
the point € = §1. In fact, within the accuracy of the plot, these two
curves are identical wlth the curve for an infinitely long open tumnel.

It may be concluded that the closed entrance has no effect 1f the vortex
is more than one tunnel height from the entrance. For £; = 0.5, which

is a more likely location of the wing, the induced veloclity at £ = £,

is 0.48I'", and the curve is no longer exactly symmetrical about the

point ¢ = & ; however, these differences from the conditions for the
infinitely long open tumnel are too small to be practically significant,
so that the usual infinite-open-tunnsel theory i1s stlll adequate

for &1 = 0.5. For &y 1less than 0.5, the deviations from infinite-
open-tunnel theory become larger rapidly, until, when the vortex is in
the plane ¢f the entrance (51 = O), the induced angle at the point & = 5

isonly -I'Et:

A similar discussion applies for the vortex in the closed portion
of the tunnel (¢; < 0), although this case normally has no practical
significance. For &3 = -1, the Iinduced angles in the nelghborhood of
the vortex are practically identical with those for an infinitely long
closed tunnel; however, in the open region (¢ > 0), the curve i1s consider-
ably different fram that for the infinitely long closed tunnel (shown as
the dashed curve in fig. 17).
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Symmetrical closed-open-closed tunnel.- In figure 18 are shown
similar curves for a symmetrical closed-open-closed tunnel of which the
length of the open section is 1.5 times the tumnel height. All curves
show a sharp reduction in the Induced angle as the closed exlt 1s approached
and entered; however, for £7 < 1, the closed exlt has practically no
effect on the induced velocities at and upstream of the vortex. The
Induced angle at the vortex decreases rapidly ag the vortex moves down-

stream from about &7 = 1.0, and is ‘ﬁr in the plane of the
exit (€1 = 1.5).

Closed-open-closed tunnel with one exit lip.- Figure 19 shows
results for a tunnel similar to that Just discussed except that one exit 1lip
is omitted. The two curves shown are very similar to the corresponding
curves for the symmstrical condition. As was pointed out earlier, the
horizontal componsent of the Induced velocity on the axis 1s not zero for
this wmsymmetrical configuration. Values of this horizontal component
have been plotted In flgure 20 for the same two vortex locations as in
figure 19. The values are seen to be very small in the forward part of
the tunnel but became gquite large In the neighborhood of the exit lip.
The effect is consistent with the concept of the exit 1lip as a concen-
tratlon of vortices having total strength equal and opposite to that of
the bound vortex and serving thereby to turn the ailr back to its original
direction. The fact that the two curves are practically identlcal lends
further support to this viewpoint.

Comparison of the three tummel types.- In flgure 21 are compared
the induced-angle curves for £] = 0.5 and 1.0 for the three tunnel
types Just discussed. It is seen that the differences are slight up to
about & = 1.0; beyond this value the curves for the closed-open tumnel
continue to rise, while the others descend rapidly. The effect of the
closed exlt is somewhat larger for the tunnel with two exit 1lips than
for the tunnel with one exit lip. Although the induced angles become
slightly negative in the downstreem closed region they eventually return
to zero.

Symmetrical closed-open-closed tunnel with unequel pressures on the

two free surfaces.- By means of equation (24) calculations were made of
the iInduced vertical velocltlies on the axls of a closed-open-closed
tummel of Jet length equal to 1.5 times the tunnel hel t and ha

equal and opposite horizontel perturbation veloclties on
the upper and lower free surfaces, respectively. The results are plotted
in figure 22. The curve shows that the vertical veloclty component (or
the induced angle) has an almost linear variation along the axis, which
corresponds to the falrly uniform curvature of the Jet that would be
expected to result fram the pressure difference between the upper and
lower surfaces. For this same condition, the Integral of the normal
velocity along the free swrface.(equation (25)), which is the downward
displacement of the Jet boundary at the exit 1ip, was found to

be 3 089'llb .

e ———————
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For a vortex TI'' located at &1 = 0.5 in the equal-pressure case,
the integral of the normal velocity along the free surface (equation (21)),
which 1s proportional to the upward displacement of the jet boundary at the
exlt 1ip, was found to be 1.20I''. Accordingly, zero displacement at the
exlt, corresponding to the existence of a closed space above or below the
Jet zreference 2), will result if the flow described in the preceding
Paragraph 1s superposed on the equal-pressure flow in such proportion

that 3.8911-b = 1.20["; cthat is, %Ib-} = 0+.31. The corresponding effect on
the induced angle at £ = &1 is found as follows: at £ = €1 = 0.5, er

for the equal-pressure case (fig. 18) is 0.48. Fram figure 22, Y at

€ = 0.5 for the unequal-pressure case 1s -1.4k, Since 0.31 X -1l.hb4 = -0 A5,
1t is seen that, if spillage at the exit 1ip is prevented, the induced
velocity In the region of the vortex is nearly eliminated. A similar
comparison of the slopes of the curves in figures 18 and 22 in the
neighborhood of & = 0.5 shows that the induced curvature in the reglon

of the vortex is also nearly eliminated.

Résums of numerical results.- The induced angle at the 1ifting
vortex 1s essentially that for an infinite open Jet 1f the vortex is more
than half the twmnel height from the entrance and the exit. The induced
angles for case 2 (one fixed exit boundery) are mnearly the seme as for
case 3 (symmetricel exlt), so that any failure of the flow to contact the
upper exlt 1lip should not appreciably affect the tummel correction.
Finally, for case 3, 1f enough of the different-presswure flow 1s added
to assure zero dlsplacement of the free boundary at the exit (that is,
if splllage at the exit is prevented, as by enclosing the space into
which the spillage would normally occur), the induced angle at the
vortex may be nearly eliminated.

IIT - CIRCULAR TUNNELS

In part III an outline is given of a general method for calculating
‘the boundary effect in an open circular tumnel of finite Jet length.
The solution, involving expansicns in Bessel fumctions, 1s scmewhat
similar to the solution for a closed circular tumel (reference 13),
but is constructed so that 1t satisfies the condition of wmiformity of
Pressure over the open.boundary end also the condition of cantinuity of
veloclty at the entrance lip. Numeorical results are given for a lifting
element on the tumel axis.

VU e e e e —— oy —_— e m e e
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STMBOLS

g, n, € rectanguil.ar coordinates in units of the tummel radius
with origin at 1ifting element (see fig. 23)
E, p, O cylindrical coordinates (see fig. 23)
a, b E-coordinate of entrance and exit lips, respectively
B variable of inteération
q variable of integration (see reference 13)
do disturbance potential associlated with body (or with
vortex system)
) ) tunnel-induced potential
‘DC tumel-induced potentlal in closed circular tunnsl
op residual potential(® - ¢¢)
In Bessel functlion of the flrst kind of order m
u constant longltudinal pexrturbatlian velocity on free surface
gi(l) (e) ot Fourier sine coefficient of ?
p p=1
gm(2) (g) mth Fourler cosine coefficlent of g%
p=1
hmn('j) nt® coefficlent in series for gm(J) (e)
Yem 8™ zero of Jp' (not including the zero at the origin)
rm(l) n Fourier sine coefficient of - E(%—-;;ﬂ
p=1 '
rm(e) mth Fourier cosine coefficient of - éj—%ic)-l
p=1

5 tummel-induced velocity paramster < :—TT —“R—§L9ﬁ>
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p density of fluid
L 11t of 11fting element
w tunnel-induced veloclty normal to the En-plene
v free~stream velocity
R tunnel radius
ANATYSIS
Introduction

In the analysis of the three-dimensional, clrcular, closed-open-
closed tunnel, an appreclable simplificetlion results when the twnnel axis
lies in the plane of the horseshoe vortex. For off-center locations of
the horseshoe vortex, or for a source-sink body on the axis, or for the
general unsymmetrical disturbance, certein complications arise that are
related to the fact that the pressure on the free boundary is then not
equal to the pressure at +o In the closed parts of the tumnel. That
is, for these cases, 1f the net perturbatlion veloclity 1s zero far
upstream and downstream in the closed parts of the tumnel, a constant
longitudinal perturbation velocity w# O will exist on the free surface.
(See parts I and IT.) ' A similar complication results for a source in a
campletely closed tumnel.

The analysis described in the following section 1s applicable
directly to the case in which the tumnel axis lies in thé plane of the
horseshoe vortex and for which the longltudingl perturbation ¥elocity on
the free surface 1s zero. (See part I.) Tn the succeeding sectlon are
derived the additional terms needed for the solution of the more general
problem. The significance of the titles of these two sections will
became clear in the analysis.

Cylindrically Symmetric Term Omitted

Boundary conditions and formal expression for ¢p.- The solution

is developed in cylindrical coordinates (§,p,0) where the E-axis
coincides with the tumnel axis end 6 1is measured from the horizontal
plane. The relations of these coordinates to the rectangular coordi-
nates (&,Mm,{) are indicated in figure 23. The distance variables ¢, 7, ¢,
and p are conslidered 1n units of the tunnel radius. ‘

Iet ®g(&,0,0) be the disturbance velocity potentlal associated
with the 1ifting body in wmlimited space (in particular, the velocity

e N s e w e mmamp m v e e ——
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potential of a horseshoe vortex). It is desired to find a fumc-
tlon <I)>(§,p,9), harmonic inside the cylinder p = 1, for which (see
part I

3% * 9) ‘Dg;‘l’) =0 (t<a, £ >D)
p=1

=0 (a <t <?)

B(qao; o)

where the region £ <a, &€ >b is the closed portion of the tumnel
eand a < £ <b is the open portion of the tummel. TIn additicn, according
to the condition of continulty at the entrance 1ip (part I), the

derivative %‘—D must be continuous at £ = a. The function ¢ is
P

p=1
then the velocity potentiel of the additional flow due to the tunnel
boundary. ’

The function ¢ 18 convenlently comsldered in two parts:
o=14dc + &
where ¢z is the known tunnel-induced potential for the same vortex

gysten In a completely closed clrcular tummel (reference 13). The deter-
mining conditions for @) are then

p=1

(1) A%y =0 (p <1)

(2) %j—"‘ =0 (¢ <a, &£ >D)
p=1

(3) %Z& =—M98T+_.¢g). (a<§<'b)
p=1 p=1

o9

W 5| = (¢=e)

p=1
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The function ®p may be expressed formally (see reference 13) as

© b
g [:inme . iq?:pfi qfa en ™ (B) cos a(s - &) as

b )
+ cos mB%jL) —i%(j;%%y gm(z) (8) cos g(B - &) dB] (26)

a

where gm(l)(é) and gm(e) (¢) are, respectively, the m® sine and

coslne coefficients of the Fourler serles for ?A and q and B
p
p::
are variables of integration. The integrations over B ‘would, in
general, have the range -o %o -+w; however, condition (2) shows that

the functions (J)(B) J=1, 2, are zero from ~-» to a and from b
to +w. The convergence of 'bh.is function and 1ts derivatives to the
desired function 95 and its derivatives 1s discussed in the appendix
of reference 13. A modification 1s necessary because of the disconti-

nuity in %‘3 that may exist at & = b. For this case, the desired
P |a=
p.—
convergence may be proved for regions bounded away fram the
circle p=1, £ = Do

The assumptlon of zero perturbation velocity on the surface of the
+
Jet is equivalent to the assumption that the expansion of ——(q&-g;lgll
p=1

in a Fourler serles in 6 conbtains no term independent of 6. For this
resson no m = O term appears In expension (26). The next section
discusses the samewhat special treatment that is required when the
Fourler serles contains a term independent of 6.

Bvaluation of gm(J) (&) o- The function &3 glven in the preceding
equation satisfies c tions (1) and (2) regardless of the precise form
of the fulz,c'bions &m )(g) It is now desired to find the func-
tions (&) for a <& <D such that & will satisfy conditions (3)

and. (il-) To this end the fumctions are represented by infinite series
of the form

el (&) =1 (3) sin X ti-8. > 1, (3) sin ni= =2 (27)

n=1
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Since &n(J) (a) thereby equals zero, condition (4) is autamatically

satisfied. Values of gptJ)(b) are here assumed to be finite, instead
of infinite (see part %‘ the corresponding Inaccuracy, however, is
considered to exist mainly In the ilmmediate region of the exit

1ip (&=b,p=1) -

Substituting this series in equation (26) glves

op = > > &m(l)f’mn(g,p) sin 8 + bun®)Bn(t,p) cos mﬂ] (28)

m=1n=20

where

_ 1 [7 Fa(ieq) fb B -8 )
Pmo(é,p)—ﬂ o mdq . sin-éb_acos a(B - &) ap

and, for n # O,

© g (ipq) b -
1 -
Pun(&,0) =;]0 —r(—yiq?m 19 & sin rm:g;_ 2 cos g(B - &) aB

a

In the evaluation -of these two expressions, the immer integrals may be

found analytically and the outer integrals, which converge rapidly, may
be found numerically. It 1s possible, however, by means of contour
integration similar to that discussed in reference 1%, to transform the
infinite integrals into iInfinite series that are more convenient for the
present purpose. The contour Integration and the resulting infinite
gseries are given in appendix A.

Differentiating equation (28) with respect to £ and taldng p =1

glves
= = op,_(&,1)
E § {h (1) sin mo —m

P=l. @ =1 n=0

30y
dF

(29)

+ hmn(z) cos mf ___Bnggé,l)}
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The constants hm('j) are to be determined sg that condition (3) is
o + 0
satisfled. For thils purpose the function - —(——%g—c)- is expanded

in a Fourier serles in 6:

(¢ + -
- _(%g—ib—llp=l = mi 1l:rm(l)(é) sin mo + rm(z)(ﬁ) cos m9:, (30)

Equating coefficients in equations (29) and (30) in order to satisfy
condition (3) then gives :

p=1

v (D (8) = ; by (IZmED) ()

It is assumed that the funcfions rm(«j)( t) can be gatisfactorily approxi-
mated by a finlte number of terms of these series. This assumption seems

OPy, (&,1)
reasonable, inasmuch as is bounded as =n approaches infinity

(see appendix, B) and h;m(J)approaches zero as n approaches infinity.
Thus,

v (D (e) zﬂi hl!m(J) Sm{t,1)

The functions rm(J)(g) and aimi(ng—’l-)— are camputed at a set of

potnts {8}, 1=0,1,2, . . . I, vhere I2N. The cosfficients I )
are then determined (msthod of least squares) so that the expression

I
i} 2
§ Em(a)(gi) - g n () 3%{1%&&1}
1=0 "

is & minimum for all values of m and J. For each pailr of values of m
end J, this condition gives N + 1 equations for the N + 1
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unknowns hmo(‘j), hml(J). . th('j), as the N + 1 partial derivatives
with respect to hmn(J) must be equal to zero. These equations are

i 3 3By (61,1) Br(ts,
Em(:l)(gi) iski(g_i.ﬂ - zé:o (3) Pmnggi ) mk(ﬁi 1)1
=0

(k=0,1,2, « . . W)

Remarks on the camputatlions.- The points {Ej} end the value of N
are chosen so that the addition of more points end increasing the value
of N will no longer appreciably affect the results. It is clear that
the point & =D camot be used and that care must be taken mot to
choose too large a proportion of the points {ﬁj} iIn the neighborhood
of € =a and £ =b; any such attempt to describe more accurately

the infinite values of gp{J)(£) at & =b or of its derivatives
at € =a aend € =Db wlith a finite num.‘?e of coefficients will cause a

large error in the approximations to (8) elsewhfere in the inter-
val a <t < b.

Since the fumctions (J)(g) rapidly approach zero as m approaches
infinity, the preceding equations ne?d be solved for only a small number
of values of m. The values of thus obtained can be used. to
give an approximation to the f1mctlon os (equation (28)):

M
1

05 = > Em( JBum(8,0) 610 10 + 1 Bun(8,0) cos mﬂ (31)

mM=1n=0
Any desired interference velocity may now be obtalined by differentiating
this series term by term and adding the results -to the corresponding
interference velocity for the closed tummel.

The vertical induced velecity in the plane of symmetry is simply

3%\ _ 198
t=0 P30 |gp

for paints on the right side of the tunnel axis, or

a¢A

for points on the left side of the tummel axis. Inspection of equa;bion (31)




NACA TN No. 1826 W7

shows lmmediately that the 6-derlivative of the second term in the bracket
is zero for either case and the contrlibution of the first term is _

19%  _1 ' (1)
paelM—pmiﬂnzjz_—omhm, 2 (t,0)
or
Y I D S RT . T
p§6—|9=n P =ln=0( )mhmn mn(giyp)

Furthermore, all verticel velocltles on the axis 1tself may be obtained
by considering only m = 1, because

1 -
p—>0

The usual geomstric symmstries also contribute toward simplifying the
calculations. For exemple, 1f the horseshoe vortex lies in the*hori-
zontal plane of symmetry of the tummnel,

&1(2) = rm(e) = hmn(z) =0

If, in addition, the vertical pleme of symmetry of the junnel 1is also
the vertical plane of symmetry of the horseshoe vortex, all even values
of m are eliminated; In the corresponding antisymmetrical case (es
with aileron deflecticon) all odd values of m are eliminated.

Cylindrically Symmetric Texrm

For a normel velocity at the tunnel wall gp(t) that is independent
of 6 +the potentlal function cannot be given exactly in the form of the
preceding section since for m = O +the integral with respect to ¢ will,
in general, not converge for q in the nelghborhood of zero. It is
necessary to add additional terms to the potentlel so as to insure the
convergence of the integrals wilth respect to q. Moreover, these terms
must be of such a nature that the potential fumectlon is stlll harmonic
and gives the required normal velocity at the tummel wall.

G e e
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’

The singularity-free potentilal inside the turmel then takes the form

-] 1 o}
= E}%%jw go(8) cos al8 - £) a8

2nkE 2 ® .
= q qzd/ioo SO(B) d-B:l dq

2o (B
where k = lim & F)
Bl—>~ P
valus of the integral. Both the 1imit and the integral must be assumed
to exist. .

and where f go(B) @B 1s the Cauchy principal

The appearance of these additional terms is not wholly due to the
presence of the open sectlion in the tunngl. For a source in a completely
closed turmel the second term does not vanish end would have to be used
in calculating the tummel-induced perturbation veloclity by the method of
reference 13. However, for a closed body or a vortex system plus 1ts
reflections in a completely closed tummel, both of these additicnal
terms vanish. ’

It is easy to verify the fact that the additional terms do insure
the convergence of the integral with respect to q. A straightforward
differentiation then shows that @ i1is in fact harmonic.and satisfies

the boundary condition %gl o1 = g,(&).

For the closed-open-closed tunnel, the boundary condition (see
part I) that the velocities far upstream and downstream be equal is no
longer automatically satisfied by putting the total tangential velocity
on the jJjet surface equal to zero. The determining condlitions for @p

are now

(1) Aty =0 : (p < 1)
(2) g—g‘ﬂ =0 (¢<ea and ¢t >D)

p=1

odp| d(% + o¢
(3) yg'p=1=“—(%?—')‘lp=l+u (a<t<D)
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@)  1m A o 1 Xa
o '
(5) f =0 C(t=a)
p=1 .

Conditigns (1) and (2) are satisfied by assuming go(t) =0 for E<a
and £ >b. Thus

T7.(10q) /b b \
‘DA:%LE‘%‘%S—«;YL go(B) cos a(p - &) dﬁ-%é‘[a go(B) dl%|dq (39

Again 1t.1s desired to find go(t) for a <& <b so that o will

satisfy conditions (3), élb), and (5). The representation of gp(£) in
the same form as before (equation 27)

go(£) = by sm§H+;.h0n sin nne2

automatically satisfies condition (5) » Substitubing this serles in

eguation (32) gives
o = 2 BonPon (6 5°) °
n =

where o ‘
1 Jo(1pq) fb xp-a
Poo (&,0) =;[ l;?%-m) . sin 5 ;- cos a(p - &) ap
0

b
& [ emz Lot e
g=v g - _J
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Pon(E,p) =%f%§—?§%yf inmté;cos a(p - &) ap
-2 bin =~ 2 3gla
2 [ st i

The resulting infinite series for the Pon(g ,p) obtained by means
of contour integrations are given in appendix A.

Condition (3) then beccmes

© oPn.(E,1 9+ 0
n= Ip:l .
oPon
But (see appendix A) 1im —a— = lim —S¢
E> +. §—> -®
N a¢> a¢ . )

and so = gso that condltion ‘becomes

g$+°°5— ga- 55
1im 0y _ 0. Thus it is meces that
§—=r+oo5—§— =0. us 8 sary

ZhOn[l-(l)nJ
2b-a

n=

There exists a wmique value of u for which the coefflcilents by, will
satisfy this equation and it can be found as follows: ILet

hop = hop' + ubipn '’

OPop (£ ,1) d(®g + %)
:h()nl S = " T ot

where
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and
laPOn(g)l) =
PSS
then if
hoo ! + uhoo” Z&'On' * uhon'9 Ii - (0= _
b - a - a

2hgo " + ;_T'[l - (1]
oot + 5 2= i - (1]

The coefficients hon' and ho,'' are found by solution of sets
of simultaneous linear equations, as described in the previous section.

The function ®,'' =2 hg,''Pon(E,p) is the perturbation potential
which, when added to that of a uniform flow, gives the potential of the
d.istm'bance-free expanding tumnel described in part I Indlcated in

1t
figure 2. The corresponding perturbation velociltles aAg have equal

and opposite values at o and -w.
FEXAMPLE

As a samewhat simplified 1llustration, the problem of a semi-
infinite wnit doublet distwribution (degenerate horseshoe vortex) along
the tumnel axls was consldered. The tunnel was assumed to have an open
Jet, 3 tunnel radiil in length. The tunnel interference was calculated
for four different positions of the upstream end of the doublet distri-
butlon, these positions being 0.1, 0.k, 0.7, and 1.0 radii downstream
from the entrance. If the upstream end 1s taken as the origin of the-
coordinate system, 'l:hen (see appendix C)

(1 1 J1(iq)
Ty )(g) TS f WEKO(Q) + K1(q)] cos q-§ dq

rm(J)(g) =0 m#£21, 3+41) : (33)
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where Ko and K; are the Bessel functions as defined in reference 15.

The points {E,i were teken as a:, a+ 0.3, a+ 0.6, « « «a+2.7,
that is, a set of ten polnts, at 0.3 inte , starting with the entrance
1lip of the tunnel. The coefflcients hjn l)were found by the method of

. least squares for N =0, ql, e « o, 5 and’also so as to satlisfy the

dP;,(€,1
equations r]_(l) (¢4) = E hln(l) ~—l-§-§-’—)—- at all ten points. Plots

n=0 )
of the resulting fwnctions gl(l)(g) for the different values of N

indicated that convergence was essentially complete for N between 3
and 5. This simplification results in appreciable saving in the amount
of computation. Not only is 1t necessary to solve a smaller set of
simultaneous equations, but also P, and BP]_H/BE need be found for,
fewer values of mn.

The computation was fairly straightforward. In the determination
of rl(l)(g), K, @and K; were.obtained fram the tables of reference 15,

and J; end Jl' from the tebles end from the relations between the

Bossel functions end their derivatives (references 15 and 16). Weddle's
formula (reference 17) is convenient for performing the integrations.
In the case of Pln, the values of yg1 appearing in the formula

for an(S) (p) were found from the formule in appendix ITT of refer-
ence 15, and J; and Jy' as just noted. In the evaluation

1 : 1 1
of lim =Py, it is noted that the valus of lim ZJ3;(x) = 5.

p—0 P x—0

The results of these computations, together with those for the
campletely open and completely closed tumnels and those given in refer-
ence 3 are shown in figures 24, 25, and 26. In figure 24, the vertical
tunnel-induced velocity along the axis for the four different positions
of the 1lifting element together with the results for the open and closed
tunnels are plotted against distance from the 1lifting element. The
same results are plotted against the longitudinal distance from the
entrance 1ip in figure 25. Figure 26 shows the results of reference 3
campared with the results of this paper for the seme case - that of the
1ifting element 1 radius downstream from the entrance 1ip. .

. The tunnel-induced velocity in the upstream reglons end in the
neighborhood of the 1lifting element, although only slightly less than
that for en open tummel for the 1lifting element 1 radius downstream,
falls off more and more rapidly as the lifting element 1s moved towards
the entrance. 1ip. The meximum induced velocity is attained about 1 radius
upstream fram the exlit, end is never more than 78 percent of the maximm
value for a completely open tumnel. Afbter the maximm the values fall
rapidly and approach the values for a closed tunnel In the downstream
regions. The results of reference 3 (see fig. 26) are consistently below
the present results especlally in the region behind the 1lifting element.
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An extrapolation from the present results indicates that the induced
upflow at the 11fting element, for the 1lifting element in the plane of
the entrance lip, is approximately zero, or the average between the
completely open end completely closed cases. The same result (that the
effect in the plane of the entrance 1lip 1s the average of the effects
for the campletely open and the campletely closed tunnels) was also
obtained for the two-dimensional tumnel (fig. 18).

CONCLUSION

-

For an open wind tunnel, the corrections corresponding to an
Infinitely long open Jet will usually be adequately accurate if the
reglon of interest (where the 1ift is located and where the boundary-
induced flow 1s belng considered) is at least half the Jet helight.from
the Jet entrance and exit sections. As the distance of the lifting
element from the entrance is decreased below this limit, the boundary-
Induced flow decreases rapldly end, when the 1lifting element is in the
entrance plene, the Induced angle at the 1ifting element is about the
average of that for an open tunnel and that for a closed tunnel.

In the theoretical studles of these flows, the usual boundary condi-
tlons of pressure wmiformity on the free surface and of zero normal
veloclty on the closed surface must be supplemented with the conditlons
that the veloclty be continuous at the entrance 1lip apd that the velocities
far downstream and far upstream in the closed sectlons be equal. For
the two-dimensional open turmel, a convenlent general mathematical approach
1s to transform the Infinite strip (representing the tunnel) to the upper
half-plane by the logarithmic transformation and then to develop the
deslred complex veloclty In this transformed plane. For the circular
open tumnel the solution may be effected by expressing the potential by
a finite serles of Bessel fumctions, satisfying the boundary condition
on the free surface at a finite number of points, and solving for the
coefficients by simultaneous linsar equations.

For noncircular open wind tunnels, solutions in terms of available
functlons will be very inconvenlent. For such cases, the trends Indicated
by the present results may suffice, when applied to the presumably known
corrections for the infinitely long open and closed confligurations, to
provide adequate corrections. Solutions for the general three-dimensional
configuration may also be possible by electrical-analogy methods, in

which either the perturbation veloclty potentlal or the acceleration
potentlal is anglogous to the electrical potential in an electrolyte
solution. Such analogies may be characterized, however, by considerable
technical difficulty.

Langley Aeronautical Laboratory )
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., December 20, 1948
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APPENDIX A

EVATUATION OF P (¢,p)

Evelwation for m # O

Contour integration.~ For n # O,

© Jn(ipq)

mn(é,p) —r(ﬁy Bin mr-.E—— cos q(Bp - &) dB (A1)

The inner integral may be found directly:

b
f stn nf=2 cos q(p - ) a8

Attt o

DIt
a

= b -
92_('b f-m’a

The problem of evaluating Pmn(g ,p) thus reduces to that of evaluating
Integrals of the form

mll—'

) [E—l)Il cos gq(b - &) - cos g(t - a{] | (r2)

. f“ In(ipg) cos kq dq
o 1a3;'(1q)(& - b)

Consider the integral in the camplex z-planse

1 I (1pz) eikz
2ni 123" (iz) (2 - B2)
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around the contour indicated in figure 27. Its velue is the sum of the
reslidues of the Integrand at its poles inside the contour. These poles
are the values of z for which Jy'(iz) = 0. The zeros of Jyp' will

be designated ygpn3 they are real and may be obtained from the formula

In appendix ITT of reference 15. The poles of the integrand then occur
at 1z = ygp, that i1s,-at 2z = -iygy. Since only the poles within the

contour are desired, only the negative zeros of Jy' are considersd.

The residus of m at z = -1y, 1is,

2 + 1yep 2 ¥ iyem
1im _l—- = 1im T T E - X
Z'—-’-iysm_ Jm (1Z) Z—,-iym m ( Z) m (ySIlD

since Jp'(ygy) = O3 by the definition of the derivative this expression
reduces to

- i

I zysmj

The residue of the integrand at z = -iygy is thus

In(pYem) o™ 5
ysm(Ysm2 + }12)Jml "(yem)

I
But the Bessel functions satisfy the relation

1 1ot m.2
Jm +:-sz +<l-§>Jm 0

whence, finally,

1 Jm(iDZ)eikZ dz - Z Jm(Dlem)elqmysm
2t 1sz‘(1z)< (Em m - Jem )Jm(ym)
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where the number of terms In the sumation depends on the radlus of the
outer semlicircle.

For k 20, if the radius of the outer semicircle is allowed to
approach iInfinity in discrete steps so as to avold the poles of the
integrand, the integral over the semicircle approaches zero. The
limiting values of the integrals along the two inner semicircles, as
their radii approach zero, are readlly determined by the usual process as

,Im(-1ph)e~1kh
4hP 3y, " (-1h)

Jm(iph)eikh
21 1
kneg, ' (ih)
These two terms may be comb:!ned{ after noting that reversing the sign

of the argument in J, and dn merely reverses the sign of their ratilo,
to

__Ip(iph)
—————2112%'(111) sin kh

Equating the total integral along the infinite comtour to the sum of the
resldues thus gives

1 j'm El'm(:I.pq)e:[kq dg  _ Ip(1ch) sin kh
2l oo 109" (10) (@ - E2) 2023y (1n)

) i Fn(pyem) o™ TSy
L — ( Ysme + hg)(me - Fsmz)Jm(:Yam)

where the ygp terms are now defined as the positive zeros of Jp'

instead of the negatlve zeros (if J,'(x) = 0, so also does Jp'(-x)) .
By equating the imaginary part of the left-hand term to the right-hand
side, which is a pure imaginary, there results, finally
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" Jy(1pg) cos kq dg _ midp(iph) .
199n'(10) (@ - B2)  2h2J;'(ih)

N ﬁzm: Tn(oyame oMy
Gme + hQYmQ N ysmz)%(ymn) .

8 =0

0

Expressions for P, n # O, m # O.- In the preceding development
it was apsumed that Xk > 0, which was acceptable with regard to equa-
tion (A2) in view of the fact that the cosine 1s an even fumction of the
variable. This essentlally nonnegative valus of k must be retalned,
however, in the final expressions for Pp,(&,p):

P _ -% Jm(ip.—b— ?ﬂa) E’l)nsm l'bb--galn:[ - gin lgb--aaln:,;\

m mJ'im
¢+ b -al\h- g .

+__£ﬂ_i In(oysm)yem . E_l)ne-lb-glym
7)o he
- o7 el (13)

Now for a <& <D

‘(-l)nsinjl’b—'_—g.!iﬁ“- = (-1)Pgin [b - a -(E - a) m:l

D -a

£ -~ a
- a

roin nelf =2l

= -gin

I
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For £ <a,

|

(-1)%s1n Jb—'_glﬂ"— = -(-1)ne;1n[° —at (a- g)mt]

DP-a

=s:l.nmrlﬁ’-

For £ >0,
n b - Eine _ o, lt-a-(b-a)
(-1) "sin e,y —(-l)sini— ——y Nt
= gin E-a
b - a

The first term on the right-hand side of squation (A3) is thus equal %o
zero for £ <a or £ >Db. The desired expressions for Py,(t,p), n # 0,
are therefore, for a < €& <P,

In (o)
- &a

)

-5 i 4™ (o) E'(g'a)yfm - (-1)ne‘(b”€)5'sm:]

8 =0

P (8,0) =

end, for £ <a or £E2>0b,

6 - B a0 [ o]
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where

In(PYem) Ysm (n £ 0)

an(S) - [

Temt + Q,mf e>%’ <m2 - Ysma) I (¥ em)

The calculations for n = 0, which follow similar lines, are not
glven here. The final formulas are, for a < & <9,

Im (1 1
m( 2Zb-a;> Bin:tg-a

Prp(4,0) = i ' i 2D -
2o (56 - ) )

() - (b-&)yem . ~(-a)
+;;Qmos(p)[§me Yom 2bﬂ-a stzl

for & < a,

= = -(b-¢ -(a-§
Pro(€,0) = s§= o Q0 (8) (o) Ersm o (b-8)7em - .2_(_b_7f___8_5 o ( )ysEl

and, for £ >,

P olE,p) = -2' Qo B () Esm o~ (E-D)Tem + _.(_’I__y e"(g'&)ysﬂ

s=0

where

) _ Jm (P sm)
DR iy e

Evaluation for m =0

The evaeluation of Pyn(f,p) for m = O proceeds essentially as
before with the difference that the contouwr of integration must avold
the origin. For n = 0, the final formules are for a < §& <b,

e e = T St e T S e e e e e < e e = e S A ¢ s e ==
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T
sin§b

- 8

ot ) = PO e, DL EpE

i .+
2(d - a) 2(b - a)‘TO'IEl 2(b - a))

- (b-£) - (&-a)
+ ;: 200 | ye00 0 et (b mao]

for £ <a,

2
Poo(t,p) = ”E(b ; a):, * : -na
) 2<'b - a;

. E (s) -(b-€)ys0 _ -(a-t)
+ P %o Js0e /980 7__” S f 2 e ysi]

and, for ¢ >Db,

2
POO(E,D) = 'E(b ;[ a):l - £ -Tta
20 - a)

- t QOO(B) oo~ E-PITs0 - R1>—T-[E)' e-(g-a)ysﬂ

8=20

For n # 0, the corresponding formulas are, for a < & < b,

Pon(850) = - = [(& - @) = (-1)2(b - )]

P -a
Jip———-m>
O(b-a

+ 8
4Dy 14 Dt
D - a0\ -a

S Z) %H(S)E-(e-a)ygo ] (_Dne-(b-a)yﬂ
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for £ < a,

2on(t,0) = - [l - £) - (-3 - ¢]
b-a :

bm_r _ ; QOn(B) E—(a-ﬁ)yso - (_l)ne-(b-ﬁ)ysﬂ

and, for £ >,

Fon(E,8) = == (5 - &) - (-t - v)]
b-a

e e e e e e e+ e e e o = = < =
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APPENDIX B

P (&1
PROOF THAT —# IS BOUNDED AS n—w, a < £ <D

Differentiating the formula from appendix A for Ppn(E,p) and
putting p =1 glves

2 (61 (i Ca
BE _ j_% (ib a) cos

N E-(s-a)ysm
L l}sm = ysm

+ (-1)% (" g)yfm\il

The second term of the right-hand member 1s of order % for large n 8o
that
J (1. 8%
i Zml&D {3 cos nmi—2
nw OF n—yw 10, " (12 ) - a

The cosine factor of this expression merely osclllates between 1 and -~1.
For the remaining factor, it 1s noted from the asymptotic expressions
for the Bessel functions (reference 15, pp. 59-61) that Jp(it) is

essentially of the form 1T ett as t-—ow, from which it can be readily
\2x

I (1t)
13, T(1t

shown that the fraction approaches unity as + —yoe
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APPENDIX C
DFERIVATION OF EQUATION (32):

Equation (32) was derived for use in calculating scme of the results
glven in reference 13, but it was not explicitly stated and discussed
in that paper. Because certaln steps In 1ts develomment are nobt obvious,
the present outline of its derivation is given. Familiarity wilth refer-
ence 13 will be assumed.

Certaln difficulties arise In the treatment of the doublet line
directly; so the result is found by comsldering a horseshoe vortex of
finite span and letting the span approach zero. Equation (6) of refer-

od,

ence 13 gives the formula for g (vhere &, 1s defined in refer-
p=.

ence 13) corresponding to a horseshoe vortex of estremgth I and
span o having one trailing vortex along the tumnel axis and the other
to the right of the axis. The procedure for the doublet consists of
letting the yaw angle ¥ be zero, expanding the radicals in ascending
powers of o, and proceeding to the next step 1n the analysis, where o
will eventually be made to approach zero. In the expemsions, powers
of o higher than the first may be neglected except where o occurs
in the product &0, since E +takes on infinite values; furthermore,
gince for the doublet the field should be synnnetrical about the vertical

plene of symmetry (e = %), msymmetrical gq%:ors, as ¢ cos 6, may be

immediately eliminated. The formula for L is thus
. =1
od ‘
2 =-I9 1im { ein 9(____50 et >
3 o1 M g0 Vi+ 22 \J1+ 2

- § gin 6

- 1
0'(§2 + S:L'D.ee) < \’l + §202>

£ gsin 6

1 - cos0 (c1)
£2 + sinfe | \[3 42 (14 £2)3/2

According to the procedure of reference 13, 1t 18 necessary to make a
Fourier analysis of the three terms in the braces and then to insert the
Fourier coefficlients in equation (8) of reference 13.
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In the first term in the braces, the expression in the brackets is
the first end only Fourier coefficient. Chenging & to B and inserting
the expression into the immer integral of equatlon (8) of reference 13
glves .

©

1im ( fo - B )cos a(p - &) ap
=00 \N1+ 2?2 \1+ g2

which, if integrated by parts, reduces to

oo

1 L o | -
0 8 . [(1 + 232 (2 + 3202)3/2_1 oin ofp - £) ap

The contribution of the Fflrst term in the brackets 1s

1 [“sinq(e -8 ap _._
qu(lq+52)3/? = -2K (q) =in gt

(See reference 15, p. 52.) The fact that the contribution of the second

term in the brackets is zero follows immediastely, upon performing the
change of variable p = Bo, from the Riemann-Iebesgue lemma (reference 11,

p. 172) .

The third term in the braces of equation (Cl) is converted as
follows:

_ _&sin @ [ 1
£2 + 1o | V1 + E2 (1 + £2)3/

go that again the first and only Fourier coefficient is given directly.
Inserting it into the immer integral of egquation (8) of reference 13
and Integrating by parts gives °

- m———LT s q(p - &) B = TasmaB-t) g
[co (1+52>3200 ./:o \’1+B2

cos=0 ] __._ZFtsine
2

(1 + 52) 3/2

= -2¢K,(q) sin gt
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The second term in the braces of equation (ClL) is not a one-term

Fourier series. Its ntl Fourier coefficient is glven by a constant
times

fznﬁsinesinne

RIE 1 - —3 )dﬂ
o oe? + sine) \/l + 2R

Inserting this expression in the immer integral of equation (8) of refer-
ence 13, and reversing the order of integration gilves

feﬁsmesmnefw B /l" 1 cos g(B - &) a4 a8
0 Lo o+ siO)\ \] 4 @22

After substitution of p = Ba, the limit of the Inner Integral becames -

1m =

=<}
D 1 P
= 1- cos q(— - §> dp
6—0 7Y - > + 025m26< \ll + P2> o
Integration by parts and elimination of terms 1n o2 reduces this
expresslion to

o

1 P+ 1 |, B ),
2B 4o

which is zero, by the Riemamm-Iebesgue lemma.

Finally, then, for the unit doublet ({—% = ])

5 _28in ef°°ﬁ>J1(iqp)
2 =2, Ton ey Fole) + Falg) st ot ag

» I (1q)
g?—lpnl -5 ef (5 '(:T [#o(a) + Ea(a)] cos ot ag

- O OIS -
e m v — e P —— ——— p
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The potentlial ¢, of a wnlt doublet 1line along the axis 1s

N ¢ / g +l\=sm9/ £ + 1

TR a+te Ve2 + 02 + ¢2 P&\/geﬂupe

whence

9%, _ sin @

SE |1 (2 + 1)37-2

The flow of the usual reflection vortices for .wings of finite span
reduces, as the span becomes erbitrarily small, to a wniform upflow in
the finite sectlon of the tumnel and therefore contributes nothing to
the longlitudinal velocity.

o(dy + &g
The coefficlient of s8in € 1in - £ l 1s thus seen to
p=1
be the expression given in equation (33).
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(a) Infinitely long open twmnel.

(b) Open Jet between closed entrance and exit regions.

Pigure l.- Tllustrations for.discussion of surface perturbation velocity
in open wind tumnels.
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TN

-

(a) Contracting jet. The pressure on thé free surface exceeds
both the upstream and downstream pressure, but is very
close to ths upstream pressure.

-
RN

(b) Expending jet. The pressure on the free surface is less
then elther the upstream or downstream mressure, but is
very close to the upstream pressurs.

Figure 2.— Contracting and expanding jets (2 or 3 dimensions).
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;\—

(a) Straight ex:i'.b.
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1 e

(b) Bell—mouth exit.

N o SNACA.~

(c) Enclosed space beneath the lower free surface (two—
dimensional tumnel). .

Flgure 3.— Splllage from the lower 1lip of the exit.
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Figure 4.— Two—dimensional jet with different pressures on the two
free surfaces.
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c

(a) Deformation due to image system; no downwash
at the wing ltself.

~JRA

(b) Undeformed upstream flow; downwash at wing
is half of that at infinity.

Pigure 5.— Two—dimensional open tunnel of infinite length.
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@111/1 AP A -l A A — % I

(a) Two—dimensional vortex, showing current lines between the
two plates.

1= .

T2 T A M AT 4 > o -
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(b) Two—dimensional vortex in a perturbation field having a horizontal
veloclty componsnt.

(c) Three—dimsnsional element of 1ift.

S NACA

(4) Horseshoe vortex of finite span.

Figure 6.— Velocity—potential analogies for two— and three—dimensional
1ifting elements.




NACA TN No. 1826 T

LLLLLLL I | l

\.I:‘\
\,
A

Sil=-= '

(a) Vortex on the center line.
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(b) Unsymmstrically located vortex.

Figure T.— Velocity—potential analogies for the two—dimensional
closed—open tunnel.
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(a) Vortex on the center line.
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(b) Unsymmstrically located vortex.(incomplete representation).
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(c) Expanding or contracting Jet.

NONPNTN

Figure 8.— Velocity—potential analogies for the two—dimensional closed—
open—closed tunnel.
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(2) Lifting elemsnt on the center line.
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(b) Unsymmetricel location of the lifting element.

Figure 9.— Acceleratlion—potential analogies for the two—dimensional
closed—open tunnsl.
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(2) Lifting element on the center line.

\

(b) Tunnel asrrangememt that corresponds to cmitting the additional
short strips.
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(¢) Expanding or contracting Jet.

Y

ool W e D . g
/ g
MRS A AV Ay AV AV AV 4V oy av a4 ”? S’

AN
NN N NN

AN

(d) Curving Jet.

Figure 10.— Acceleration—potentiial analogies for the two—dimenslonal
closed—open—closed tunnsel.
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Insulator

(a) Closed-open tunnel.

(v) Open section represented by many
longitudinal strips.

(c) Open section represented by only
two longitudinal strips, '

Figure 11.- Acceleration-potential analogy for three-dimensionsl
closed-open tunnel and two approximate acceleration-potential
anslogles for three-dimensional closed-open-closed tunnels.
The closed-open anslogy mey also be considered as an approxi-
mate analogy for the closed-open-closed tunnel.
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\ minus
equals o
(a) Representation of lifting element.
‘ )
minus LULLLLULLULLLLLLLLLELLL MMW
equals  wwecriicsiseies ., sttt g 20l
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(b) Representation of ogen boundary in
closed-open-closed tunnsl.

Figure 12.- Acceleration-potential analogies aé the

difference between two veloclty-potential analogles
slightly shifted relative to each other.
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Figure 13.— Physical and transformed spaces for two—dimensional
closed—open tunnel of unit height.
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Figure 1l4.- Physical and transformed spaces for two-
dimensional tunnel of unit helght with one exlt boundary.
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Figure 15.— Physical and transformed spaces for symmetrical two—
dimensional closed—open—closed tunnel of unit height.
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Figure 16.~ Maps of the functions w;(z) and wy(z).
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Figure 17.- Tunnsl-induced angle on axis of two-dimensional
¢losed-open tunnel, with vortex at several locations along
axis,
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Figure 18.- Tunnel-induced angle on sxis of symmetrical two-
dimensional closed-open-closed tunnel, with vortex at several
locations along axls. Length of open section 1s 1.5 times
tunnel helght,
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Flgure 19.- Tunnel-induced angle on axis of two-dimens!onal
closed-open-clesed tunnel having one exit lip, with vortex
at two locatlons along axis, Length of lower free surface
is 1.5 times tunnel height.
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Filgure 20.- Tunnel-induced horlzontal velocity on axis of
two=-dimensional closed-open-closed tunnel having one exit
1ip, with vortex at two locatlons along axis, Length of
lower free surface is 1.5 times tunnel height. Ordinate is

(Induced horizontal velocity liv_’
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Figure 2l.- Oomparison of tunnsl-induced angles on axls for three
types of two-dimensional tunnels. Length of open sectlons for
the closed-open-closed tunnels is 1.5 times tunnel helght.
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Figure 22.-~ Tunnel-induced vertical velocity v ' on axis of
symmetrical two-dimensional closed-open-closed tunnel
having additional velocities of -up and up on the
upper and lower free boundaries, respectively. ILength of
open sectlon is 1.5 times tunnel height.
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Frgure 23—Closed- open-closed tunnel showing
coordrnate Systems.
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Figure 24.— Tunnel - induced velgeity parameé
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Figure 25.- Tunnel- induced velocity parameter along tunnel axis for several positions

of 7he lifihg element in a closed- ‘fﬂ
(Same curves as on fig- 24, but plotte
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Figure 26.—Comparison or the results of the fpresen?"
_paper with Those of reference 3 for a=-/,
7ogether with those for oben and closed
ciFcular funnels.
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Figure 27.-Fath of complex confour infegrafion.
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